hãy chia số 480 thành 3 phần tỉ lệ thuận 1/5; 1/4; 0,3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi ba phần cần chia của số 185 là a,b,c
ta có a+b+c= 185
Vì a,b,c tỉ lệ thuận với 3/5; 7/4 và 7/10
suy ra \(\frac{a}{\frac{3}{5}}=\frac{b}{\frac{7}{4}}=\frac{c}{\frac{7}{10}}=\frac{a+b+c}{\frac{3}{5}+\frac{7}{4}+\frac{7}{10}}=\frac{185}{\frac{61}{20}}=\frac{3700}{61}\)
suy ra a=2220/61; b=5475/61; c=2590/61
b) Gọi ba phần cần chia của số 480 là a,b,c
ta có a+b+c= 480
Vì a,b,c tỉ lệ nghịch với 5;4 và 10/3
nên 5a=4b=10/3c
hay \(\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{3}{10}}=\frac{a+b+c}{\frac{1}{5}+\frac{1}{4}+\frac{3}{10}}=\frac{480}{\frac{3}{4}}=640\)
a=640:5=128
b= 640:4=160
c= 640.3/10=192
a) Gọi 3 phần đó lần lượt là x;y;z
=>x/2 = y/3=z/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2=y/3=z/5=z+y+z/2+3+5 = 480/10 = 48
x/2 = 48 => x = 96
y/3 = 48 => y = 144
z/5=48 =>z=240
gọi 3 số chia ra là a;b;c
ta có : a/2=b/3=c/5
=> a+b+c/2+3+5 = a/2=b/3=c/5
=> 480/10=a/2=b/3=c/5
=> 48=a/2=b/3=c/5
=> a=96;b=144;c=240
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
gọi 3 phần của 480 là c,b,z
ta có: c/2= b/3= z/5 và c+b+Z=480
=)c+b+z/2+3+5=480/10=48
c/2=48=)48x2=96
b/3=48=)48x3=144
z/5=48=)48x5=240
b)tương tự
a: Gọi ba số cần tìm là a,b,c
Theo đề, ta có:a/2=b/3=c/5
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{480}{10}=48\)
Do đó: a=96; b=144; c=240
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{5}}=\dfrac{b}{\dfrac{1}{4}}=\dfrac{c}{\dfrac{3}{10}}=\dfrac{a+b+c}{\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{3}{10}}=\dfrac{480}{\dfrac{3}{4}}=640\)
Do đó: a=128; b=160; c=192