Cho tam giác ABC đều. Vẽ điểm D sao cho B là trung điểm của CD, vẽ điểm E sao cho C là trung điểm của BE . Tính số đo các óc của tam giác ADE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABDC có
I là trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: CD//AB và CD=AB
Hình tự vẽ nhé!
a) Xét tam giác ABC và Tam giác ADE
Có: AD=AB(gt)
AE=AC(gt)
góc BAC= góc DAE( 2 góc đối đỉnh)
Vậy tam giác ABC = tam giác ADE (c-g-c)
b) Ta có tam giác ABC= tam giác ADE( chứng minh trên)
Suy ra góc EBA=góc ADC(2 góc tương ứng)
Vậy BE song song với DC ( có 2 góc so le trong bằng nhau)
a) Ta có : EC và DB là cặp góc đối đỉnh => góc A1 = góc A2
Xét tam giác ADE và tam giác ABC có :
EA = AC (gt)
BA = AD (gt)
góc A1 = góc A2 ( CM trên )
=> \(\Delta ADE=\Delta ABC\) (c.g.c) (đpcm)
b) Vì \(\Delta ADE=\Delta ABC\) => góc AED = góc ACB ( cặp góc tương ứng )
Mà hai góc này là cặp góc so le trong
=> BE // CD (đpcm)
c) Vì \(\Delta ADE=\Delta ABC\) => ED = BC ( cặp cạnh tương ứng )
Vì H là trung điểm của BC => BH = HC = \(\frac{BC}{2}\)=> HC = \(\frac{ED}{2}\)(1)
Vì K là trung điểm của ED => EK = KD = \(\frac{ED}{2}\)(2)
Từ (1) và (2) => HC = EK
Xét tam giác AKE và tam giác AHC có :
góc AEK = ACH (CM ở b)
AE = AC (gt)
EK = HC (CM trên)
=> \(\Delta AKE=\Delta AHC\) (c.g.c)
=> AK = AH (cặp cạnh tương ứng)
=> A là trung điểm của HK (đpcm)
Tick mk nha!!!
Bạn tham khảo nhé:
Trên tia đối của KG lấy điểm F sao cho KG=KF.
Ta có: ΔABC đều => ^A=600. Xét ΔADE có: ^A=600, AD=AE
=> ΔADE đều. Mà G là trọng tâm của ΔADE
=> G cũng là giao của 3 đường trung trực trong ΔABC
=> DG=AG (T/c đường trung trực) (1)
Xét ΔGDK và ΔFCK:
KD=KC
^DKG=^CKF => ΔGDK=ΔFCK (c.g.c)
KG=KF
=> DG=CF (2 cạnh tương ứng). (2)
Từ (1) và (2) => AG=CF.
Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK
Lại có: ED//BC (Vì ΔADE đều) => ^EDK=^BCK (So le trong)
=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)
Xét ΔΔADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE
=> ^GDE=^ADE/2=300.
Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)
Từ (3) và (4) => ^GAB=^FCB
Xét ΔAGB và ΔCFB có:
AB=CB
^GAB=^CFB => ΔAGB=ΔCFB (c.g.c)
AG=CF
=> GB=FB (2 cạnh tương ứng) (5).
=> ^ABG=^CBF (2 góc tương ứng). Lại có:
^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:
^CBF+^GBC=600 => ^GBF=600 (6)
Từ (5) và (6) => ΔGBF là tam giác đều. => ^BGF=600 hay ^BGK=600
K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300
Xét ΔBGK: ^BGK=600, ^GBK=300 => ^BKG=900.
ĐS: ^GBK=300, ^BGK=600, ^BKG=900.
Vì \(\Delta ABC\\\) là tam giác đều nên \(\widehat{ABC}=\widehat{ACB}=60^o\) ⇒\(\widehat{ABD}=\widehat{ACE}=120^o\)
\(\Delta ABD\) có AB = BD ⇒ \(\Delta ABD\) là tam giác cân nên \(\widehat{BAD}=\widehat{BDA}=30^o\)
Tương tự ta có \(\widehat{CAE}=\widehat{CEA}=30^o\)
Vậy \(\widehat{DAE}=60^o+30^0+30^o=120\)
Số đo các góc của \(\Delta ADE\) là: \(\widehat{ADE}=30^o;\widehat{AED}=30^o;\widehat{DEA}=120^o\)