Xác định hằng số m để hiệu của 2 đơn thức sau luôn có giá trị âm với mọi giá trị của biến: 2mx^2y^4z^6 -2010x^2y^4z^6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp mình đi
Mình giải thế này có đúng không ?
Ta có : \(kx^2y^4z^2-x^2y^4z^2\)= \(\left(k-1\right)x^2y^4z^2\)
\(\Rightarrow k-1\le0\)
\(\Rightarrow k\le1\)
Ta có:
\(k.x^4.y^6.z^{2020}-x^4.y^6.z^{2020}\)
\(=\left(k-1\right).x^4.y^6.x^{2020}\)
Ta cần xác định \(\left(k-1\right)\) có không âm hoặc bằng 0
Nếu \(\left(k-1\right)>0\Leftrightarrow k>1\) thì hiệu của 2 đơn thức ko âm
Nếu \(\left(k-1\right)=0\Leftrightarrow k=1\) thì hiệu của 2 đơn thức ko âm
Vậy để 2 đơn thức đó ko âm ta cần khi \(k\ge1\)
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
đơn thức là học ở lớp 7
các bài này có trong lớp 7
=>đó là bài lớp 7
=>đpcm
Để hiệu của hai đơn thức luôn âm thì 2m-2010<0
hay m<1005