cho abc (gạch ngang trên đầu) chia hết cho27 . chứng tỏ bca (gạch ngang trên đầu) cũng chia hết cho27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcdeg = 1000.abc + deg
abcdeg = 999.abc + abc + def
abcdeg = 37.27.abc + abc + deg (*)
Từ (*) ta có:
abc + deg chia hết cho 37
vế phải chia hết cho 37 => vế trái chia hết 37
Kết luận abcdeg chia hết cho 37
abcabc=abc.1001=abc.91.11 chia hết cho 11
tich dung cho minh nha
abcabc = 1001 x abc
= 11 x 91 x abc
luôn luôn chia hết cho 11
a) Ta có: aaa=a.111
=a.3.37 chia hết cho 37
b)Ta có: ab-ba=(10a+b)-(10b+a)
=(10a-a)-(10b-b)
=9a-9b
=9(a-b) chia hết cho 9 (đpcm)
a) Ta có:
aaa = 100a + 10a + a
= 111a
= 3.37.a chia hết cho 37
b) Ta có:
ab - ba = (10a + b) - (10b + a)
= 10a + b - 10b - a
= 9a - 9b
= 9.(a - b) chia hết cho 9
\(a.\)\(135\); \(175\); \(315\); \(375\); \(715\); \(735.\)
b. 135 ; 153 ; 315 ; 351 ; 357 ; 375 ; 573 ; 537 ; 513 ; 531 ; 753 ; 735 .
a)Đặt n=20a20a20a
Ta có:n=20a.1001001=20a.(1001000+1)=20a.1001000+20a
Mà 20a.1001000 chia hết cho 7(vì 1001000 chia hết cho 7)
=>20a chia hết cho 7
20a=196+(4+a)
196 chia hết cho 7=>4+a chia hết cho 7
Mà a là chữ số
=>a=3
(các số trên có gạch đầu nha)
Ta có: \(\overline{abc}⋮27\)
\(\Rightarrow10.\overline{abc}⋮27\)
\(\Rightarrow\overline{abc0}⋮27\)
\(\Rightarrow1000a+100b+10c⋮27\)
\(\Rightarrow999a+a+100b+10c⋮27\)
\(\Rightarrow999a+\overline{bca}⋮27\)
Mà \(999a⋮27\)
\(\Rightarrow\overline{bca}⋮27\left(đpcm\right)\)