Cho tam giác ABC có AB = AC, góc A = 120độ. Đường trung trực của AB cắt AB tại D và cắt BC ở E. Gọi H là trung điểm BC.
a, C/minh: AE = BE
b, C/minh: \(\Delta BED=\Delta AEH\)
c, Hai đường thẳng AH và DE cắt nhau tại M. C/minh : AM = AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Do ∆ABC cân tại A (gt)
⇒ ∠B = ∠C = (180⁰ - ∠BAC) : 2
= (180⁰ - 120⁰) : 2
= 30⁰
∆AHB vuông tại H (do AH ⊥ BC)
⇒ ∠B + ∠BAH = 90⁰
⇒ ∠BAH = 90⁰ - ∠B
= 90⁰ - 30⁰
= 60⁰
Xét hai tam giác vuông: ∆AED và ∆BED có:
ED là cạnh chung
AD = BD (do D là trung điểm của AB)
⇒ ∆AED = ∆BED (hai cạnh góc vuông)
⇒ ∠EAD = ∠EBD = 30⁰ (hai góc tương ứng)
⇒ ∠EAH = ∠BAH - ∠EAD
= 60⁰ - 30⁰
= 30⁰
⇒ ∠EAH = ∠EAD
Xét hai tam giác vuông: ∆AEH và ∆AED có:
AE là cạnh chung
∠EAH = ∠EAD = 30⁰
⇒ ∆AEH = ∆AED (cạnh huyền - góc nhọn)
Mà ∆AED = ∆BED (cmt)
⇒ ∆BED = ∆AEH
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: ta có: ΔABE=ΔHBE
nên AE=HE; BA=BH
Suy ra: BE là đường trung trực của AH
a, Xét tam giác ABE và tam giác HBE có
AB=HB(gt)
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
BE chung
\(\Rightarrow\)\(\Delta\)ABE=\(\Delta\)HBE(c.g.c)\(\Rightarrow\)\(\widehat{EAB}\)=\(\widehat{EHB}\)mà \(\widehat{EAB}\)=90 độ\(\Rightarrow\)\(\widehat{EHB}\)=90 độ
\(\Rightarrow\)EH vuông góc vs BC
a) Vì BE là tia phân giác của tam giác ABC
=> \(\widehat{ABE}=\widehat{EBC}\)hay \(\widehat{ABE}=\widehat{EBH}\)
* Xét tam giác ABE và tam giác HBE có :
+ )BA = BH ( gt)
+) \(\widehat{ABE}=\widehat{EBH}\) (cmt)
+)BE chung
=> tam giác ABE = tam giác HBE ( c-g-c)
-> \(\widehat{BAE}=\widehat{BHE}\)( hai cạnh tương ứng )
Mà \(\widehat{BAE}=90^0\)( \(\widehat{BAC}=90^0\))
-> \(\widehat{BHE}=90^0\)
=> BH vuông góc EH hay BC vuông góc EH ( đpcm)
b) Vì tam giác ABE = tam giác HBE (cmt)
=> AE = EH ( 2 cạnh tương ứng )
* Có : AE = EH ( cmt)
=> Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A ( 1)
BA = BH ( gt )
=. Khoản cách từ điểm B đến điềm H bằng khoảng cách từ điểm B đến điểm A ( 2 )
Từ ( 1 ) và ( 2 ) => BE là đường trung trực của AH ( đpcm )
c) Vì tam giác ABC có \(\widehat{A}\)= \(90^0\) ( gt)
=> AB vuông góc AC hay AE vuông góc AK ( E e AC ; K e AB )
=>\(\widehat{EAK}=90^0\)
Vì EH vuông góc AC ( cmt)
=> \(\widehat{EHC}=90^0\)
Xét tam giác AEK và tam giác HEC có
AE = EH (cmt)
\(\widehat{EAK}=\widehat{EHC}=90^0\)
\(\widehat{AEK}=\widehat{HEC}\)(đối đỉnh)
=> tam giác AEK = tam giác HEC ( g-c-g)
=> EK = EC ( 2 cạnh tương ứng)
d) Có : BA = BH ( gt 0
=> tam giác BAH cân tại B
=. \(\widehat{BAH}=\frac{180^0-\widehat{ABH}}{2}\)( 3)
Vì tam giác AEK = tam giác HEC ( cmt )
=> AK = HC ( 2 cạnh tương ứng)
Có: AK = BA + AK
BC = BH + HC
Mà BA = BH ( gt )
AK = HC ( cmt)
=> BK = BC
=> Tam giác BKC cân tại B
=>\(\widehat{BKC}=\frac{180^0-\widehat{KBC}}{2}\)hay \(\widehat{BKC}=\frac{180^0-\widehat{ABH}}{^{ }2}\)( 4 )
Từ ( 3 ) và ( 4 ) => \(\widehat{BAH}=\widehat{BKC}\)
Mà 2 góc ở vị trí đồng vị
=> AH // BC ( đpcm)
e) Có : Tam giác BKC cân tại B
M là trung điểm BC
=> BM là đường trung tuyến đồng thời là đường phân giác của tam giác BKC
Có BK là đường phân giác của tam giác BKC (cmt)
=> BK là đường phân giác của\(\widehat{KBC}\)hay \(\widehat{BAH}\)
Mà BE cũng là đường phân giác của \(\widehat{BAH}\)
=> BE trùng BK hay ba điểm B ; E ; K thẳng hàng ( đpcm)