Chứng minh rằng:
a,5^50-5^49+5^48 chia hết cho 7
b, 7^16+7^15-7^14 chia hết cho 11
c, 24^54.54^24.2^10 chia hết cho 72^63
d, (2^100+2^101+2^102) : 7 là một số tự nhiên
e, 10^100+14 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+5b chia hết 7 thì a và b chia hết cho 7
vậy 10a +b chia hết 7
Ta có :
\(a+5b⋮7\)
\(\Leftrightarrow21a-a+5b-7b⋮7\)
\(\Leftrightarrow20a-2b⋮7\)
\(\Leftrightarrow2\left(10a-b\right)⋮7\)
Mà ( 2 ; 7 ) = 1
=> 10a - b chia hết cho 7
** Sai đề nhé bạn
Ta xét hiệu:
(10a + 50b) - (10a + b) = 10a + 50b - 10a - b
= 49b \(⋮\) 7
\(\Rightarrow\) (10a + 50b) - (10a + b) (1)
Theo bài ra: a + 5b \(⋮\) 7
\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)
Từ (1) và (2), suy ra:
10a + b \(⋮\) 7
Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
X+5
VÌ 5 CHIA HẾT CHO 5
NÊN X+5 CHIA HẾT CHO 5
B, X-18 CHIA HET 6
VÌ 18 CHIA HẾT CHO 6
NÊN X-18 CHIA HEETS CHO 6
C, 21+X CHIA HẾT CHO 7
VÌ 21 CHI HẾT CHO 7\
NÊN 21+X CHIA HÉT CJO 7
K MIK NHA