cho các số a,b,c # 0 thỏa mãn điều kiện a+1/b=b+1/c=c+1/a. cho a=1, tìm b,c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + b, b + c, c + a đều là các số hữu tỉ
=> 2(a + b + c) là số hữu tỉ
=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)
=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ
=> a, b, c đều là số hữu tỉ (đpcm)
\(a,\dfrac{3}{a+b}=\dfrac{2}{b+c}=\dfrac{1}{c+a}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{b+c}{2}=\dfrac{c+a}{1}=\dfrac{2\left(a+b+c\right)}{6}=\dfrac{a+b+c}{3}\\ \Rightarrow\dfrac{a+b}{3}=\dfrac{a+b+c}{3}\\ \Rightarrow3\left(a+b+c\right)=3\left(a+b\right)\\ \Rightarrow3\left(a+b\right)+3c=3\left(a+b\right)\\ \Rightarrow3c=0\\ \Rightarrow c=0\)
Vậy \(P=\dfrac{a+b-2019c}{a+b+2018c}=\dfrac{a+b}{a+b}=1\)
Trong ba số tự nhiên a,b,c phải có ít nhất hai số cùng chẵn lẻ .
Giả sử : hai số đó là a và b .
Vì : bc cùng tính chẵn lẻ với b ⇒p=bc+a⇒p=bc+a chẵn
Mà : p là số nguyên tố ⇒p=2⇒b=a=1⇒p=2⇒b=a=1
Khi đó : q=ab+c=1+c=ca+1=ca+b=rq=ab+c=1+c=ca+1=ca+b=r
Nếu hai số cùng tính chẵn lẻ là a và c hoặc b và c thì ta làm tương tự như trên
⇒⇒ Trong ba số nguyên tố p,q,r phải có hai số bằng nhau .
Cho các số a,b,c là số nguyên
Ta có : a+b+c = a*b*c . Tìm các số a,b,c
Đa 1;2;3
=> a+b-c+a-b+c-a+b+c = 15+21-2015
=> a+b+c = -1979
=> a = 18 ; b = -1000 ; c = -997
Tk mk nha
Ta có:
1+\(\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)
Thay a=1
=>\(1+\dfrac{1}{b}=b+\dfrac{1}{c}=c+1\)
*Lấy \(1+\dfrac{1}{b}=c+1\Rightarrow\dfrac{1}{b}=c\Rightarrow b=\dfrac{1}{c}\)
=>\(1+\dfrac{1}{b}=\dfrac{2}{c}=c+1\)
*Lấy \(\dfrac{2}{c}=\dfrac{c+1}{1}\)
=> 2=c(c+1)
<=> 2=c2+c
=>c=-2
*Lấy \(1+\dfrac{1}{b}=\dfrac{2}{c}\)
Thay c=-2 và quy đồng
=>\(\dfrac{b+1}{b}=-1\)
=>b+1=-b
=> b+b=-1
=>2b=-1
=> b=-1/2
Vậy b=\(-\dfrac{1}{2};c=-2\)