Cho góc nhọn xOy, Ot là tia phân giác lấy M thuộc Ot, từ M vẽ MA vuông góc với Ot, MB vuông góc Oy.Đường thẳng AM cắt Oy tại D, đường thẳng BM cắt Ox tại C. CHỨNG MINH: a) tình các góc của tam giác OAB, góc AMO=60 độ b) cho OA=12cm,OM=16cm . Tính MA và MB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOIA=ΔOIB
Suy ra: OA=OB
a. Xét tam giác AOM và tam giác BOM có
OA=OB(gt)
AOM=BOM(gt)
OM chung
=> tam giác AOM= tam giác BOM (cgc)
b. Theo câu a, tam giác AOM= tam giác BOM (cgc)
=> OAM=OBM hay OAC=OBD
Xét tam giác OAC và tam giác OBD có
OAC=OBD( c/m trên)
OA=OB(gt)
AOB chung
=> tam giác OAC= tam giác OBD (gcg)
=> AC=BD
c. Gọi giao điểm giữa Ot và AB là I
Xét tam giác IAO và tam giác IBO có
OA=OB(gt)
OAI=OBI(gt)
OI chung
=> tam giác IAO= tam giác IBO(cgc)
=> AIO=BIO
Mà AIO+BIO=180*( kề bù)
=> AIO=BIO= 90*
=> OI vg AB hay Ot vg AB
Ta lại có d vg AB=> d//Ot
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Sửa đề: Từ M vẽ MA vuông góc với Oxa) ΔAOM vuông ở A nên
\(\widehat{AMO}+\widehat{O_1}=90^o\)
\(60^o+\widehat{O_1}=90^o\)
\(\Rightarrow\widehat{O_1}=30^o\)
mà \(\widehat{O_1}=\widehat{O_2}\) ( Ot là tia phân giác của góc xOy )
=> \(\widehat{O_2}=30^o\)
=> \(\widehat{AOB}=\widehat{O_1}+\widehat{O_2}=30^o+30^o=60^o\) (*)
+) Xét ΔAOM và ΔBOM có:
\(\widehat{OAM}=\widehat{OBM}=90^o\)
\(\widehat{O_1}=\widehat{O_2}=30^o\)
OM là cạnh chung
=> ΔAOM = ΔBOM ( c.h-g.n )
=> OA = OB ( 2 cạnh tương ứng )
=> ΔOAB cân tại O (**)
Từ (*) và (**)
=> \(\widehat{OAB}=\widehat{OBA}=\dfrac{180-60}{2}=60^o\)
Vậy.....
b) ΔOAM vuông ở A ; áp dụng định lí Pi-ta-go ; ta có:
\(AM^2+OA^2=OM^2\)
\(AM^2+12^2=16^2\)
\(AM^2+144=256\)
\(\Rightarrow AM^2=256-144\)
\(\Rightarrow AM^2=112\)
\(\Rightarrow AM=\sqrt{112}\approx11\left(cm\right)\)
Do ΔOAM = ΔOBM ( c/m a)
=> AM = BM = 11 cm ( 2 cạnh tương ứng )
Vậy...