Đặt \(A=n^3+3n^2+5n+3\). Chứng minh rằng A chia hết cho 3 với mọi giá trị nguyên dương của n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=n^3+3n^2+5n+3\)=\(n^3-n+3n^2+6n+3\)
=\(n\left(n^2-1\right)+3\left(n^2+2n+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)+3\left(n+1\right)^2\)
Vì \(\left(n-1\right)n\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)
Mà \(3\left(n+1\right)^2⋮3\) nên \(A=n^3+3n^2+5n+3⋮3\) với mọi n
vì 3n^2 và 3 chia hết cho 3 nên xét n^3 + 5n = n(n^2 + 5)
nếu n chia hết cho 3 thì ....
nếu n không chia hết cho 3 thì n^2 chia 3 dư 1 suy ra n^2 + 5 chia hết cho 3
ta có n là số nguyên dương => n là số tự nhiên khác 0
A = n3 + 3n2 + 5n +3
= (n3 - n) + 3(n2 +2n +1)
= n(n - 1)(n + 1) + 3(n2 + 2n +1)
ta thấy n(n-1)(n+1) là 3 số tự nhiên liên tiếp
mà tích 3 số tự nhiên liên tiếp thì chia hết cho 3
=> n(n-1)(n+1) chia hết cho 3
mặc khác 3(n2 + 2n +1) luôn chia hết cho 3
=> n(n-1)(n+1) + 3(n2 + 2n +1) chia hết cho 3 với mọi n nguyên dương
=> n3 + 3n2 + 5n +3 luôn chia hết cho 3 với mọi n nguyên dương
a) \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)
\(=n^3+n^2+2n^2+2n\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n^2+2n\right)\left(n+1\right)\)
\(=n\left(n+2\right)\left(n+1\right)\)
Vì n, n+1, n+2 là 3 số nguyên liên tiếp, mà trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3
=>n3+3n2+2n chia hết cho 3
b)Để A chia hết cho 15 thì A phải chia hết cho 3 và 5
Ta đã chứng minh được A chia hết cho 3 với mọi số nguyên n ở phần a)
A chia hết cho 5 <=> n(n+1)(n+5) chia hết cho 5
+)Nếu n chia hết cho 5
=>n\(\in\){0;5}
+)Nếu n+1 chia hết cho 5
=>n\(\in\){4;9}
+)Nếu n+2 chia hết cho 5
=>n\(\in\){3;8}
Vậy n\(\in\){0;3;4;5;8;9} thì A sẽ chia hết cho 15
Trả My làm đúng nhưng phần b cậu thừa 1 đáp án nhé. Vì đề bài cho là tìm giá trị nguyên dương của n mà số 0 không phải là số nguyên dương cũng không phải số nguyên âm đâu nên loại đáp án là 0.
A=n^3+3n^2+5n+3
=n^3+5n+3n^2+3
=n(n^2+5)+3(n^2+1)
do 3(n^2+1) luôn chia hết cho 3 nên mik chỉ xét n(n^2+5)
đặt n=3k suy ra 3k((3k)^2+5) luôn chia hết cho 3 suy ra A chia hết cho 3
đặt n=3k+1 suy ra (3k+1)((3k+1)^2+5)=(3k+1)(9k^2+6k+1+5)=(3k+1)(9k^2+6k+6)=(3k+1)3(3k^2+2k+2) chia hết cho 3 suy ra A chia hết cho 3
đặt n=3k+2 suy ra (3k+2)((3k+2)^2+5)=(3k+2)(9k^2+12k+4+5)=(3k+2)(9k^2+12k+9)=(3k+2)3(3k^2+4k+3) chia hết cho 3 suy ra A chia hết cho 3
vậy A luôn chia hết cho 3 với mọi giá trị của n
\(A=n^3+3n^2+5n+3\)
\(A=n^3+3n^2+2n+3n+3\)
\(A=n^3+n^2+2n^2+2n+3n+3\)
\(A=n^2\left(n+1\right)+2n\left(n+1\right)+3n+3\)
\(A=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)
Vì \(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\forall n\in Z^+\)
Lại có:\(3\left(n+1\right)⋮3\forall n\in Z^+\)
\(\Rightarrow A⋮3\left(đpcm\right)\)
Lời giải:
\(A=n^3+3n^2+5n+3\)
\(A=n^2(n+1)+2n(n+1)+3(n+1)\)
\(A=(n+1)(n^2+2n+3)\)
Nếu \(n=3k\Rightarrow n^2+2n+3=9k^2+6k+3=3(3k^2+2k+1)\)
\(\Rightarrow n^2+2n+3\vdots 3\Rightarrow A\vdots 3\)
Nếu \(n=3k+1\Rightarrow n^2+2n+3=n(n+2)+3\)
\(=(3k+1)(3k+3)+3=3[(3k+1)(k+1)+1]\vdots 3\)
\(\Rightarrow A\vdots 3\)
Nếu \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)
\(\Rightarrow A\vdots 3\)
Từ các TH trên suy ra A luôn chia hết cho 3 với mọi số tự nhiên $n$