K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

tk hen:

undefined

Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, khoảng cách từ O đến cạnh AB là OH = 2cm , đến cạnh BC là OK = 3cm

* Kéo dài OH cắt cạnh CD tại H'.

Ta có OH ⊥ BC

⇒ OH' ⊥ CD và OH' = 2cm

Suy ra HH' bằng đường cao của hình bình hành.

 = HH'.AB ⇒ 

* Kéo dài OK cắt AD tại K'.

Ta có: OK ⊥ BC ⇒ OK' ⊥ CD và OK' = 3 (cm)

Suy ra KK' là đường cao của hình bình hành.

 = KK'.AB ⇒ 

Chu vi của hình bình hành ABCD là (6 + 4).2 = 20 (cm).

a: Xét ΔMOB vuông tại O và ΔNOD vuông tại O có

OB=OD

\(\widehat{MBO}=\widehat{NDO}\)

Do đó: ΔMOB=ΔNOD

Suy ra: OM=ON

c: Xét tứ giác MBND có 

O là trung điểm của MN

O là trung điểm của BD

Do đó: MBND là hình bình hành

mà MN\(\perp\)BD

nên MBND là hình thoi

13 tháng 6 2019

a,Hình bình hành ABCD có AB=CD

⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN

Mặt khác, M,N lần lượt là trung điểm của AB và CD

Do đó, AM//CN

Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)

b, Tứ giác AMCN là hình bình hành

⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)

⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)

Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^

ΔEDNΔEDN và ΔKBMΔKBM có:

M2ˆ=N2ˆM2^=N2^

DN=BMDN=BM

B1ˆ=D1ˆB1^=D1^

⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)

⇒ED=KB⇒ED=KB (đpcm)

c, Gọi O là giao điểm của AC và BD.

ABCD là hình bình hành

⇒OA=OC⇒OA=OC

ΔCABΔCAB có:

MA=MBMA=MB

OA=OCOA=OC

MC cắt OB tại K

⇒⇒ K là trọng tâm của ΔCABΔCAB

Mặt khác, I là trung điểm của BC

⇒⇒ IA,OB,MC đồng quy tại K

Hay AK đi qua trung điểm I của BC (đpcm)

13 tháng 6 2019

A B M D C N E K

Mk vẽ ko đc đẹp lắm , xl nha . Chỗ AC bạn kẻ thêm 1 nét đứt và tên là O nha