K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3. 
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí) 
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 

b) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5. 
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4. 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí) 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí). 
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5

14 tháng 7 2018

1) gọi số đó là ab 

theo bài ra ta có ab+ba=a+10b+b+10a=(10a+a)+(10b+b)=11a+11b

Vì 11a và 11b chia hết cho 11 nên 11a+11b chia hết cho 11

Vậy ab+ba chia hết cho 11

2) - a.b.c+ 2=333 

          a.b.c =333-2=331

- a.b.c+b=335         

b=335-331=2

- a.b.c+c=341

          c= 341-331 =10

=> Ta có: a.b.c=331

mà b=4; c=10 

=>4.10.c=331

=>40.c=331

mà 331 lại là số nguyên tố 

=> ko tồn tại các số tự nhiên a, b ,c nào

3) Có số abcd = 100ab +cd =200cd +cd (vì ab=2cd)

hay = 201cd

mà 201 chia hết cho 67

Do đó nếu ab=2cd thì abcd chia hết cho 67

16 tháng 11 2021
??????????¿
27 tháng 11 2015

  giả thiết a, b, c nguyên; a² = b²+c² 

* ta biết số chính phương: n² khi chia 3 dư 0 hoặc dư 1 
từ a² = b²+c², thấy b² và c² khi chia 3 không thể cùng dư 1 
vì nếu chúng cùng dư 1 thì a² = b²+c² chia 3 dư 2 vô lí 
=> hoặc b², hoặc c² có ít nhất 1 số chia 3 dư 0 => b hoặc c chia hết cho 3 
=> abc chia hết cho 3

DD
9 tháng 6 2021

Xét số nguyên \(x\)bất kì. 

\(x=3k\)\(x^3=27k^3⋮9\)

\(x=3k+1\)\(x^3=\left(3k+1\right)^3=27k^3+27k^2+9k+1\equiv1\left(mod9\right)\)

\(x=3k-1\)\(x^3=\left(3k-1\right)^3=27k^3-27k^2+9k-1\equiv-1\left(mod9\right)\)

Vậy lập phương của một số nguyên khi chia cho \(9\)chỉ có thể có dư là \(0,1,8\).

mà \(a^3+b^3+c^3=2007⋮9\)nên có ít nhất một trong ba số hạng đó chia hết cho \(9\).

khi đó nó chia hết cho \(3\).

Vậy \(abc⋮3\).

26 tháng 9 2015

+) Chứng minh 6a - b chia hết cho 13

ta có (8a + 3b) + 3.(6a - b) = 8a + 3b + 18a - 3b  = 26a 

Vì 26a; 8a + 3b chia hết cho 13 nên 3.(6a - b) chia hết cho 13 . mà 3 không chia hết cho 13 nên 6a - b chia hết cho 13 => 6a - b = 13.k

+) Chứng minh a + 2b chia hết cho 13

Ta có: 2(8a + 3b) - 3(a + 2b) = 16a + 6b - 3a - 6b = 13a

Vì 8a + 3b chia hết cho 13 nên 2(8a + 3b) chia hết cho 13; 13a luôn chia hết cho 13

=> 3(a + 2b) chia hết cho 13 => a + 2b chia hết cho 13 => a + 2b = 12.q

Vậy (6a - b)(a+ 2b) = 13.k. 13.q = 169.k.q =>  (6a - b)(a+ 2b) chia hết cho 169