Giúp mình với mọi người ơi
Cho biểu thức M = -x22 - y22 + xy + 2x + 2y
Tìm cặp số x, y để biểu thức đạt giá trị lớn nhất và tìm giá trị đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=-x^2-y^2+2x+2y+xy
A= -( x^2+y^2-2x-2y-xy)
A=-[( x^2-2.x.(y/2+1)+(y/2+1)^2+(3y^2/4- 3y+3)-4]
A= -[(x-y/2-1)^2+ 3.(y/2-1)^2+4)]
Tự làm nốt nhé
B=-x2-y2+xy+2x+2y
4B=-(4x2+4y2-4xy-8x-8y)
=-[4x2-4x(y+2)+(y+2)2+3(y-2)2-16]
=-[(2x-y-2)2+(y-2)2]+4=<4
Dấu = khi x=y=2
Vậy Amax=4 <=>x=y=2
\(D=-x^2-y^2+xy+2x+2y\)
\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)
mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)
\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)