K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2015

Xét tam giác ABH và ACK có:

AH=AK(gt)

AB=AC(tam giác ABC cân)

Â:góc chung

=> ABH=ACK 

=> Góc ABH= Góc ACK 

=> Góc OBC= Góc OCB

=> OBC cân tại O

18 tháng 1 2015

Ta có tam giác ABC là tam giác cân tại A                                                                                                                                                   AB=AC; B=C (tính chất tam giác cân)                                                                                                                                         Xét tam giác ACK và tam giác ABH có:                                                                                                                                               AK=AH(giả thiết)                                                                                                                                                                               A chung                                                                                                                                                                              AC=AB(giả thiết)                                                                                                                                                                                 => tam giác ACK=tam giác ABH(c.g.c)                                                                                                                                              OBC=OCB(2 góc tương ứng)                                                                                                                                                              Ta có B=OBC + KBO                                                                                                                                                                            C=OCB + HCO                                                                                                                                                                                    Mà B=C(giả thiết)                                                                                                                                                                                KBO= HCO(cmt)                                                                                                                                                                                  => OBC= OCB                                                                                                                                                                                    => OBC là tam giác cân               

Xét ΔHBC và ΔKCB có 

HC=KB

\(\widehat{HCB}=\widehat{KBC}\)

BC chung

Do đó: ΔHBC=ΔKCB

Suy ra: \(\widehat{HBC}=\widehat{KCB}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

31 tháng 5 2017

Hình vẽ:

A B C K H O 1 2 1 2

Giải:

Xét \(\Delta ABH\)\(\Delta ACK\) có:

\(AH=AK\left(gt\right)\)

\(\widehat{A}\) là góc chung

\(AB=AC\) ( Vì \(\Delta ABC\) cân tại \(A\) )

Do đó: \(\Delta ABH=\Delta ACK\left(c.g.c\right)\)

\(\Rightarrow\widehat{B_2}=\widehat{C_2}\) ( cặp góc tương ứng )

\(\widehat{B}=\widehat{C}\) ( Do \(\Delta ABC\) cân tại \(A\) )

\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)

\(\Rightarrow\Delta OBC\) cân tại \(O\) . \(\left(đpcm\right)\)

3 tháng 9 2016

Ta có : AK = AH ; AB = AC ; góc BAC chung

=> Tam giác ABH = tam giác ACK (c.g.c)

=> góc ABH = góc ACK mà góc ABC = góc ACB

=> Góc HBC = góc KCB => góc OBC = góc OCB => Tam giác OBC cân tại O

3 tháng 9 2016

Xét ΔAHB và ΔAKC có:

 AB=AC(gt)

\(\widehat{A}\) : góc chung

AH=AK(gt)

=>ΔAHB=ΔAKC(c.g.c)

=>\(\widehat{ABH}=\widehat{ACK}\)

Có: \(\widehat{B}=\widehat{ABH}+\widehat{CBH}\)

      \(\widehat{C}=\widehat{ACK}+\widehat{BCK}\)

Mà \(\widehat{B}=\widehat{C}\left(gt\right);\widehat{ABH}=\widehat{ACK}\left(cmt\right)\)

=> \(\widehat{CBH}=\widehat{BCK}\)

=>ΔOBC cân taaij O

3 tháng 9 2016

Bn vẽ hình đi nha

Giải

 Cách 1

Do tam giác ABC cân tại A nên góc ABC=góc ACB và AB=AC

Do AB=AC mà AK=AH=> KB=HC

Xét tam giác BKC và tam giác CHB có:

-BK=HC

-góc ABC=góc ACB

-BC chung

=> tam giác BHC=tam giác CKB(c.g.c)

=>góc CHB=góc BKC

Xét tam giác KOB và tam giác HOC

-góc BKO=góc CHO

-BK=HK

-góc KOB=góc HOC

=>.tam giác KOB=tam giác HOC (g.c.g)

=>BO=CO ( chôc này bn có thể nói góc bằng nhau rồi cộng góc lại cx đc)

=> tam giác BOC cân tại O ( đpcm)

Cách 2

Xét tam giác ABH và tam giác ACK có

-AK=AH

-góc A chung

-AB=AC( tam giác ABC cân tại A)

=>góc ABH=góc ACB

=>góc HBC=góc KCB

=> tam giác OBC cân tại O ( Đpcm)

16 tháng 12 2016

Gọi O là trung điểm hay giao đ của BH và CK

3 tháng 2 2017

là giao điểm phải ko bn @Trần Việt Linh

14 tháng 1 2019

a) Xét tam giác BKC và tam giác CHB

+ BC chung 

+ BK = HC vì AB = AC ; AK = AH => AB-AK=AC-AH

+ góc ABC = góc HCB  (tam giác ABC cân)

Vậy tam giác BKC = tam giác CHB (c.g.c)

Và góc BKC = góc CHB

\(\widehat{KOB}=\widehat{HOC}\)(đối đỉnh)

\(\widehat{BKO}=\widehat{CHO}\left(cmt\right)\)

\(\Rightarrow\widehat{KBO}=\widehat{HCO}\)(3 góc trong tam giác)

Xét \(\Delta OKB\)và \(\Delta OHC\)

+ BK = HC

\(\widehat{KBO}=\widehat{OCH}\)

\(\widehat{OKB}=\widehat{OHC}\)

Vậy \(\Delta OKB=\Delta OHC\left(g.c.g\right)\)

VÀ OH = OK (hai cạnh tương ứng ) => Tam giác OKH cân tại O

OB = OC (hai cạnh tương ứng) => Tam giác OBC cân tại O 

c) Xét \(\Delta AKO\)và \(\Delta AHO\)

+ AO chung

+ OK = OH

+ AH = AK

\(\Rightarrow\Delta AKO=\Delta AHO\left(c.c.c\right)\)

=> Góc KAO = góc HAO

Gọi giao điểm của KH và AO là F

Xét tam giác AFK và tam giác AFH

+ AK = AH

+ ÀF chung

+góc KAF = góc HAF (cmt)

Vậy tam giác AFK = tam giác AFH (c.g.c)

Và KF = FH(hai cạnh tương ứng)

Hay AO đi qua trung điểm của HK

7 tháng 1 2018

+) Xét ΔABH và ΔACK, ta có:

AB = AC ( vì tam giác ABC cân tại A)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

AH = AK (giả thiết)

Suy ra: ΔABH = ΔACK(c.g.c)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

+ Do đó, tam giác OBC cân tại O.

Giải sách bài tập Toán 7 | Giải sbt Toán 7