Cho tam giác ABC vuông tại A.(AB>AC), có đường cao AH. Vẽ đường tròn tâm (C) bán kính CA, đường thẳng CH cắt đường tròn (C) tại điểm D. Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kì, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. C/m : \(2\sqrt{PE.QF}=EF\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
b: ΔCAD cân tại C
mà CH là đường cao
nên CH là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
góc ACB=góc DCB
CB chung
Do dó: ΔCAB=ΔCDB
=>góc CDB=90 độ
=>BD là tiếp tuyến của (C)
4.1:
a: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=8^2+6^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(CH\cdot CB=CA^2\)
=>\(CH\cdot10=6^2=36\)
=>CH=36/10=3,6(cm)
4.2:
Ta có: ΔCAD cân tại C
mà CB là đường cao
nên CB là phân giác của góc ACD
Xét ΔCAB và ΔCDB có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔCAB=ΔCDB
=>\(\widehat{CAB}=\widehat{CDB}\)
mà \(\widehat{CAB}=90^0\)
nên \(\widehat{CDB}=90^0\)
=>BD là tiếp tuyến của (C)
4.3:
Xét (C) có
PA,PM là các tiếp tuyến
Do đó: PA=PM
Xét (C) có
QM,QD là các tiếp tuyến
Do đó: QM=QD
Chu vi tam giác BPQ là:
\(C_{BPQ}=BP+PQ+BQ\)
=BP+PM+BQ+QM
=BP+PA+BQ+QD
=BA+BD
=2BA
=2*8=16(cm)
2: Xét ΔCAD và ΔCEA có
góc C chung
góc CAD=góc CEA
=>ΔCAD đồng dạng với ΔCEA
=>CA/CE=CD/CA
=>CA^2=CE*CD