Một khối học sinh khi xếp hàng 2,hàng 3,hàng 4,hàng 5,hàng 6 đều thiếu 1 người,nhưng xếp hàng 7 thì vừa đủ.Biết số học sinh chưa đến 300.Tính số học sinh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ta có số học sinh lớp đó là x thì x+1 chia hết cho
2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240(chú ý bội này phải dưới 300 hs)
Và +x+1=60
x=59(0 chia hết cho 7 loại)
+ x+1=120
x=119(chia hết cho 7 được)
+x+1=180
x=179(0 chia hết cho 7 loại)
+x+1=240
x=239(0 chia hết cho 7 loại)
Vậy số học sinh của lớp này là:119 hoc sinh
Đáp số:119 học sinh
Gọi số học sinh của khối là a ( a \(\in\)N* )
Theo bài số học sinh xếp hàng 2, hàng 3, hàng 4 hoặc hàng 5 thì thiếu 1 người
=> a + 1 chia hết cho 2 , 3 , 4 , 5
=> a + 1 \(\in\)BC ( 2; 3 ; 4 ; 5 )
Ta có : BCNN ( 2 ; 3 ; 4 ; 5 ) = 60
=> a + 1 \(\in\)BC ( 2 ; 3 ; 4 ; 5 ) = B ( 60 ) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; ... }
=> a = { -1 ; 59 ; 119 ; 179 ; 239 ; 299 ; 359 ; ...}
Mà a < 300 và a chia hết cho 7
=> a = 119 ( thỏa mãn điều kiện đề bài )
Vậu số học sinh của khối là : 119 học sinh
gọi số học sinh cần tìm là x(xthuộc Z)
ta có số học sinh khi xếp hàng 2 hangf3 hangf4 hàng 5 đều thiếu 1 người
suy ra x+1 chia hết cho 2,3,4,5
suy ra x+1 thuộc tập hợp bôi của 2,3,4,5
ta có:
2=2
3=3
4=22
5=5
suy ra x+1 thuộc tập hợp B(2,3,4,5)=22.3.5=60
suy ra x+1 thuộc tập hợp bội chung của 60={0;60;120;180;240;300;360;...}
tương đương x thuộc tập hợp của{59;119;179;239;299;259;...}
mà x chia hết cho 7 suy ra x =119
vậy x=119
ta tìm BCNN của 2,5,6
2=2
5=5
6=2.3
BCNN là 2.3.5=30
30 | 60 | 90 | 120 | 150 |
29 | 59 | 89 | 119 | 149 |
duy chỉ có 119 chia hết cho 7
vậy số học sinh là 119 học sinh
Ta có số học sinh lớp đó là x thì x+1 chia hết cho
2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240(chú ý bội này phải dưới 300 hs)
Và +x+1=60
x=59(0 chia hết cho 7 loại)
+ x+1=120
x=119(chia hết cho 7 được)
+x+1=180
x=179(0 chia hết cho 7 loại)
+x+1=240
x=239(0 chia hết cho 7 loại)
Vậy số học sinh của lớp này là:119 hoc sinh
Đáp số:119 học sinh
Giải
Ta có số học sinh lớp đó là x thì x+1 chia hết cho
2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240(chú ý bội này phải dưới 300 hs)
Và +x+1=60
x=59(0 chia hết cho 7 loại)
+ x+1=120
x=119(chia hết cho 7 được)
+x+1=180
x=179(0 chia hết cho 7 loại)
+x+1=240
x=239(0 chia hết cho 7 loại)
Vậy số học sinh của lớp này là:119 hoc sinh
Đáp số:119 học sinh
Gọi số học sinh của trường là A, theo đề bài ta có:
A+1 chia hết cho 2, 3, 4, 5 nên số nhỏ nhất là
A+1= 3 *4 *5 = 60. Số học sinh chưa đến 300 nên lần lượt ta tìm được A + 1 là: 60, 120, 180, 240, 300.
=> A = 59, 119, 179, 199.
Do số học sinh của trường xếp hàng 7 vừa đủ nên số học sinh của trường là 119
Giải
Ta có số học sinh lớp đó là x thì x+1 chia hết cho
2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240(chú ý bội này phải dưới 300 hs)
Và +x+1=60
x=59(0 chia hết cho 7 loại)
+ x+1=120
x=119(chia hết cho 7 được)
+x+1=180
x=179(0 chia hết cho 7 loại)
+x+1=240
x=239(0 chia hết cho 7 loại)
Vậy số học sinh của lớp này là:119 hoc sinh
Đáp số:119 học sinh
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m+1) ⋮2; (m + 1) ⋮3; (m + 1) ⋮ 4; (m+ 1) ⋮5; (m + 1) ⋮6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 3000).
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh