K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Ta có

\(\left\{{}\begin{matrix}\dfrac{3a}{ab+3a+6}=\dfrac{3ac}{abc+3ac+6c}=\dfrac{3ac}{24+3ac+6c}=\dfrac{ac}{8+ac+2c}\\\dfrac{4b}{bc+4b+12}=\dfrac{4ab}{abc+4ab+12a}=\dfrac{4ab}{24+4ab+12a}=\dfrac{ab}{6+ab+3a}=\dfrac{abc}{6c+abc+3ac}=\dfrac{24}{6c+24+3ac}=\dfrac{8}{2c+8+ac}\\\dfrac{2c}{ac+2c+8}\end{matrix}\right.\)

=> \(\dfrac{ac}{ac+2c+8}+\dfrac{2c}{ac+2c+8}+\dfrac{8}{ac+2c+8}=\dfrac{ac+2c+8}{ac+2c+8}=1\)

=>A=1

18 tháng 6 2017

??????????????????????????????????

/????????????????????????????????????//

= ?????

18 tháng 6 2017

Wendy bạn không hiểu đề ak hay là...........................ko làm đc ^-^

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

Nếu $a+b+c=0$ thì:

\(a+b=-c; b+c=-a; c+a=-b\)

\(\Rightarrow \left\{\begin{matrix} \frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-1(\text{thỏa mãn giả thiết})\\ P=\frac{-c}{2c}+\frac{-a}{3a}+\frac{-b}{4b}=\frac{-1}{2}+\frac{-1}{3}+\frac{-1}{4}=\frac{-13}{12}\end{matrix}\right.\)

Nếu $a+b+c\neq 0$. Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2(a+b+c)}=\frac{1}{2}\)

\(\Rightarrow b+c=2a; c+a=2b; a+b=2c\)

\(\Rightarrow P=\frac{a+b}{2c}+\frac{b+c}{3a}+\frac{c+a}{4b}=\frac{2c}{2c}+\frac{2a}{3a}+\frac{2b}{4b}=1+\frac{2}{3}+\frac{1}{2}=\frac{13}{6}\)

7 tháng 12 2017

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2a+5b}{3a-4b}=\dfrac{2bt+5b}{3bt-4b}=\dfrac{b\left(2t+5\right)}{b\left(3t-4\right)}=\dfrac{2t+5}{3t-4}\\\dfrac{2c+5d}{3c-4d}=\dfrac{2dt+5d}{3dt-4d}=\dfrac{d\left(2t+5\right)}{d\left(3t-4\right)}=\dfrac{2t+5}{3t-4}\end{matrix}\right.\Rightarrowđpcm\)

1 tháng 1 2018

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Lại có :

\(VT=\dfrac{2a+5b}{3a-4b}=\dfrac{2bk+5b}{3bk-4b}=\dfrac{b\left(2k+5\right)}{b\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(1\right)\)

\(VP=\dfrac{2c+5d}{3c-4d}=\dfrac{2dk+5d}{3dk-4d}=\dfrac{d\left(2k+5\right)}{d\left(3k-4\right)}=\dfrac{2k+5}{3k-4}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

1 tháng 1 2018

Theo đề ta có:

\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)

=> \(\dfrac{2a+5b}{3a-4b}-\dfrac{2c+5d}{3c-4d}\)

=> \(\dfrac{a+b}{a-b}-\dfrac{c+d}{c-d}\)(1)

\(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)(2)

=> \(\dfrac{a-b}{c-d}\)\(\dfrac{a+b}{c+d}\)(3)

Từ (2) và (3) => \(\dfrac{a-b}{c-d}\) = \(\dfrac{a+b}{c+d}\) = \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a-b}{c-d}\) = \(\dfrac{a+b}{c+d}\)= > \(\dfrac{a-b}{a+b}\) = \(\dfrac{c-d}{c+d}\)

=> \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)= \(\dfrac{a+b}{a-b}-\dfrac{c+d}{c-d}\)(4)

Từ (1) và (4)

=> \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)( đpcm)

15 tháng 1 2019

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\)

\(\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\) (đpcm)

Chúc bạn học tốt nhaok

16 tháng 1 2019

Điều kiện nào mà bạn chứng minh được như đề bài yêu cầu đc?

3a - 4b có khác 0 không?

cậu lý ở đâu ra đấy?

Lý luận đâu?