1. Thực hiện phép tính
a) \(\dfrac{2^{15}.9^3}{6^7.4^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =11+3/4-6-5/6+4+1/2+1+2/3
=10+9/12-10/12+6/12+8/12
=10+13/12=133/12
b: \(=2+\dfrac{17}{20}-1-\dfrac{11}{15}+2+\dfrac{3}{20}\)
=3-11/15
=34/15
c: \(=\dfrac{31}{7}:\left(\dfrac{7}{5}\cdot\dfrac{31}{7}\right)\)
\(=\dfrac{31}{7}:\dfrac{31}{5}=\dfrac{5}{7}\)
d: \(=\dfrac{29}{8}\cdot\dfrac{36}{29}\cdot\dfrac{15}{23}\cdot\dfrac{23}{5}=\dfrac{9}{2}\cdot3=\dfrac{27}{2}\)
a: \(=\dfrac{3}{4}+\dfrac{9}{5}\cdot\dfrac{2}{3}-1=\dfrac{3}{4}+\dfrac{6}{5}-1=\dfrac{19}{20}\)
b: \(=\dfrac{6}{7}\left(\dfrac{8}{13}+\dfrac{9}{13}-\dfrac{4}{13}\right)=\dfrac{6}{7}\cdot\dfrac{13}{13}=\dfrac{6}{7}\)
Thực hiện phép tính ( tính hợ lí nếu được)
a, \(\dfrac{3}{4}+\dfrac{9}{5}:\dfrac{3}{2}-1\) b, \(\dfrac{6}{7}.\dfrac{8}{13}+\dfrac{6}{13}.\dfrac{9}{7}-\dfrac{4}{13}.\dfrac{6}{7}\)
= \(\dfrac{3}{4}+\dfrac{6}{5}-1\) = \(\dfrac{6}{7}.\left(\dfrac{8}{13}+\dfrac{9}{13}-\dfrac{4}{13}\right)\)
= \(\dfrac{15}{20}+\dfrac{24}{20}-\dfrac{20}{20}\) = \(\dfrac{6}{7}.\left(\dfrac{17}{13}-\dfrac{4}{13}\right)\)
= \(\dfrac{39}{20}-\dfrac{20}{20}\) = \(\dfrac{6}{7}.1\)
= \(\dfrac{19}{20}\) = \(\dfrac{6}{7}\)
=\(\left[\dfrac{\left(0,4.2\right)^5}{\left(0,4\right)^6}+\dfrac{2^9.2^6.3^8}{\left(3.2\right)^6.2^9}\right]=\left[\dfrac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}+\dfrac{2^6.3^8}{3^6.2^6}\right]\)
=\(\left[\dfrac{2^5}{0,4}+3^2\right]\)
=\(\left[80+9\right]=89\)
\(\left[\dfrac{\left(2.0,4\right)^5}{0,4,0,4^5}+\dfrac{2^{15}.3^8}{3^6.2^6.2^9}\right]\div\dfrac{3^{20}.5^{30}}{3^{15}.5^{30}}\)
\(=\left[\dfrac{2^5.0.4^5}{0,4.0,4^5}+\dfrac{2^{15}.3^8}{3^6.2^{15}}\right]\div3^5\)
\(=\left[\dfrac{2^5}{0,4}+3^2\right]\div243\)
\(=80+\left(3^5\div3^2\right)\)
\(=80+3^3\)
\(=80+27\)
\(=107\)
\(a,\dfrac{15^3}{5^4}\)
\(=\dfrac{\left(3\cdot5\right)^3}{5^4}\)
\(=\dfrac{3^3\cdot5^3}{5^4}\)
\(=\dfrac{3^3}{5}\)
\(=\dfrac{27}{5}\)
\(---\)
\(b,\dfrac{21^3}{7^4}\)
\(=\dfrac{\left(3\cdot7\right)^3}{7^4}\)
\(=\dfrac{3^3\cdot7^3}{7^4}\)
\(=\dfrac{3^3}{7}\)
\(=\dfrac{27}{7}\)
\(---\)
\(c,\dfrac{6^6}{3^8}\)
\(=\dfrac{\left(2\cdot3\right)^6}{3^8}\)
\(=\dfrac{2^6\cdot3^6}{3^8}\)
\(=\dfrac{2^6}{3^2}\)
\(=\dfrac{64}{9}\)
#\(Toru\)
a) \(\dfrac{27^3\cdot11+9^5\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{3^9\cdot\left(11+3\cdot5\right)}{3^9\cdot2^4}\)
\(=\dfrac{11+15}{16}\)
\(=\dfrac{26}{16}\)
\(=\dfrac{13}{8}\)
b) \(\dfrac{5^8+2^2\cdot25^4+2^3\cdot125^3-15^4\cdot5^4}{4^2\cdot625^2}\)
\(=\dfrac{5^8+2^2\cdot5^8+2^3\cdot5^9-3^4\cdot5^4\cdot5^4}{2^4\cdot5^8}\)
\(=\dfrac{5^8\cdot\left(1+2^2+2^3\cdot5-3^4\right)}{5^8\cdot2^4}\)
\(=\dfrac{1+4+40-81}{16}\)
\(=\dfrac{-36}{16}\)
\(=\dfrac{-9}{4}\)
c) \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)
\(=\dfrac{-2}{6}\)
\(=-\dfrac{1}{3}\)
\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)
\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)
\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(5-36\right)\)
\(B=-\left(-31\right)\)
\(B=31\)
_____________________________
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=3\sqrt{3}-\sqrt{3}+1\)
\(=2\sqrt{3}+1\)
\(\dfrac{2^{15}.9^3}{6^7.4^4}=\dfrac{2^{15}.\left(3^2\right)^3}{3^7.2^7.2^8}=\dfrac{2^{15}.3^6}{3^7.2^{15}}=\dfrac{3^6}{3^7}=\dfrac{1}{3}\)
\(\dfrac{2^{15}.9^3}{6^7.4^4}=\dfrac{2^{15}.3^6}{2^{15}.3^7}=\dfrac{1}{3}\)