K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

tự vẽ hình nha

a)Xét tam giác vuông IMA và tam giác vuông IQA có

góc A1=góc A2(AI là tia phân giác góc A)

AI chung

\(\Rightarrow\)\(\Delta IMA=\Delta IQA\left(ch-gn\right)\)

b)\(\Delta IMA=\Delta IQA\left(ch-gn\right)\)

nên IM=IQ

27 tháng 12 2017

Không có văn bản thay thế tự động nào.

6 tháng 5 2020

giúp mình nhé mình cần gấp lắm

6 tháng 5 2020

??????hả

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

10 tháng 12 2016

Kí hiệu tam giác viết là t/g nhé

a) BI là phân giác ABC nên ABI = CBI

Xét t/g BID vuông tại D và t/g BIF vuông tại F có:

BI là cạnh chung

DBI = FBI (cmt)

Do đó, t/g BID = t/g BIF ( cạnh góc vuông và góc nhọn kề) (đpcm)

b) t/g BID = t/g BIF (câu a) => ID = IF (2 cạnh tương ứng) (1)

C/m tương tự câu a ta cũng có: t/g ADI = t/g AEI ( cạnh góc vuông và góc nhọn kề)

=> ID = IE (2 cạnh tương ứng)

Từ (1) và (2) => ID = IE = IF (đpcm)

 

10 tháng 12 2016

ban tu ve hinh nhengaingungngaingung

a) Xet tam giac BID va tam giac BIF co:

BI:canh chung

goc DBI=goc IBF(vi tia BI la tia phan giac cua goc DBF)

goc BDI=goc BFI(=90do)

Vay tam giac BID=tam giac BIF(canh huyen, goc nhon)

b) Vi tam giac BID=tam giac BIF(cau a)

Nen ID=IF(2 canh tuong ung) (1)

Xet tam giac AID va tam giac AIE co:

AI:canh chung

goc DAI=goc EAI(vi tia AI la tia phan giac cua goc DAE)

goc ADI=goc AEI(=90do)

Nen tam giac AID=tam giac AIE(canh huyen,goc nhon)

Suy ra:ID=IE(2 canh ung) (2)

Tu (1), (2)\(\Rightarrow\) IF=ID=IE

Chuc ban ngay cang hoc gioi len nheokok

Hen gap lai ban vao dip khac nheok
 

22 tháng 10 2023

a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.

Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.

Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.

b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2

Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.

c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)

Vậy, ta đã chứng minh AF = AE * tan(B).

d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB

Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB

Vậy, ta đã chứng minh CE/BF = AC/AB.

13 tháng 11 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật