K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

ĐKXĐ : x \(\ge\) -8

\(\Rightarrow\sqrt{2x+16}=x+4\)

\(\Rightarrow2x+16=x^2+8x+16\)

\(\Rightarrow x^2+6x=0\)

\(\Rightarrow x\left(x+6\right)=0\)

=> x = 0 

hoặc x + 6 = 0=> x = -6

Vậy x = 0 ; x = -6

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

\(\begin{array}{l}a)\sqrt x  - 16 = 0\\\sqrt x  = 16\\x = {16^2}\\x = 256\end{array}\)

Vậy x = 256

\(\begin{array}{l}b)2\sqrt x  = 1,5\\\sqrt x  = 1,5:2\\\sqrt x  = 0.75\\x = {(0,75)^2}\\x = 0,5625\end{array}\)

Vậy x = 0,5625

\(\begin{array}{l}c)\sqrt {x + 4}  - 0,6 = 2,4\\\sqrt {x + 4}  = 2,4 + 0,6\\\sqrt {x + 4}  = 3\\x + 4 = 9\\x = 5\end{array}\)

Vậy x = 5

31 tháng 8 2021

\(C=\sqrt{9x^2}-2x=\left|3x\right|-2x=-3x-2x=-5x\)

\(D=x-4+\sqrt{16-8x+x^2}=x-4+\left|4-x\right|=x-4+x-4=2x-8\)

\(C=\sqrt{9x^2}-2x=-3x-2x=-5x\)

\(D=x-4+\sqrt{x^2-8x+16}=x-4+x-4=2x-8\)

11 tháng 9 2015

pt <=> \(\sqrt{4.\left(x-5\right)^2}=0\)

=> \(2.lx-5l=0\)

=> \(lx-5l=0\)

=> x - 5 = 0

=> x = 5 

Bài 1

***\(y=-x\)

Cho \(x=0\Rightarrow y=0\)

      \(x=-1\Rightarrow y=1\)

Đồ thị hàm số \(y=-x\)là đường thẳng đi qua hai điểm \(\left(0,0\right);\left(-1;1\right)\)

*** \(y=\frac{1}{2}x\)

Cho \(x=0\Rightarrow y=0\)

       \(x=2\Rightarrow y=1\)

Đồ thị hàm số \(y=\frac{1}{2}x\)là đường thẳng đi qua 2 điểm \(\left(0;0\right)\left(2;1\right)\)

*** \(y=2x+1\)

Cho \(x=0\Rightarrow y=1\)

    \(y=-1\Rightarrow x=-1\)

Đồ thị hàm số \(y=2x+1\)là đường thẳng đi qua 2 điểm \(\left(0;1\right)\left(-1;-1\right)\)

Bài 2 

a, \(P=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{x-16}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+4\right)-4\left(\sqrt{x}-4\right)-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x+4\sqrt{x}-4\sqrt{x}+16-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x-8\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{x-4\sqrt{x}-4\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)-4\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)

\(=\frac{\sqrt{x}-4}{\sqrt{x}+4}\)

b,  Với x = 25

\(\Rightarrow P=\frac{\sqrt{25}-4}{\sqrt{25}+4}=\frac{5-4}{5+4}=\frac{1}{9}\)

c, \(P=\frac{\sqrt{x}-4}{\sqrt{x}+4}=1-\frac{8}{\sqrt{x}+4}\)

Để P thuộc Z thì \(\sqrt{x}+4\inƯ\left(8\right)=\left(-8;-4-2;-1;1;2;4;8\right)\)

\(\sqrt{x}+4=-8\Rightarrow\sqrt{x}=-12VN\)

\(\sqrt{x}+4=-4\Rightarrow\sqrt{x}=-8VN\)

\(\sqrt{x}+4=-2\Rightarrow\sqrt{x}=-6VN\)

\(\sqrt{x}+4=-1\Rightarrow\sqrt{x}=-5VN\)

\(\sqrt{x}+4=1\Rightarrow\sqrt{x}=-3VN\)

\(\sqrt{x}+4=2\Rightarrow\sqrt{x}=-2VN\)

\(\sqrt{x}+4=4\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

\(\sqrt{x}+4=8\Rightarrow\sqrt{x}=4\Rightarrow x=16\)

d, Để P nhỏ nhất thì \(\frac{8}{\sqrt{x}+4}\)lớn nhất 

\(\frac{8}{\sqrt{x}+4}\)lớn nhất khi \(\sqrt{x}+4\)nhỏ nhất '

\(\sqrt{x}+4\)nhỏ nhất = 4 khi x = 0

vậy x=0 thì P đạt giá trị nhỉ nhất min p = -1

6 tháng 9 2021

1. \(\sqrt{x^2-4x+3}=x-2\)

<=> x2 - 4x + 3 = (x - 2)2

<=> x2 - 4x + 3 = x2 - 4x + 4

<=> x2 - x2 - 4x + 4x = 1

<=> 0 = 1 (Vô lí)

vậy PT có nghiệm là S = \(\varnothing\)

6 tháng 9 2021

2. \(\sqrt{4x^2-4x+1}=x-1\)

<=> \(\sqrt{\left(2x-1\right)^2}=x-1\)

<=> 2x - 1 = x - 1

<=> 2x - x = -1 + 1

<=> x = 0

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

23 tháng 10 2017

Bài 1:

a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)

TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)

TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)

b)  \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)

c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)

TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)

Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)

TH2: \(x< -\frac{3}{8}\)

Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)

Bài 2:  Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)

Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)

Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)

Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)

\(\Rightarrow x\in\left\{1;9;81\right\}\)

22 tháng 10 2017

 Bài 1 :

\(2\left(x-\sqrt{12}\right)^2=6\)

\(\Rightarrow\left(x-\sqrt{12}\right)^2=6:2=3\)

\(\Rightarrow x-\sqrt{12}=\sqrt{3}\)

\(\Rightarrow x=3\sqrt{3}\)