cho hàm số y=f(x)=3x2-1 Tính f(-1) f(1) f(2) f(5/2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
y=f(-1)=3*(-1)-2=-5
y=f(0)=3*0-2=-2
y=f(-2)=3*(-2)-2=-8
y=f(3)=3*3-2=7
Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.
3b
Khi y=5 =>5=5-2*x=>2*x=0=> x=0
Khi y=3=>3=5-2*x=>2*x=2=>x=1
Khi y=-1=>-1=5-2*x=>2*x=6=>x=3
f(-1)=3.1-2=3-2=1
f(0)=3.0-2=0-2=-2
f(-2)=3.(-2)-2=-6-2=-8
f(3)=3.3-2=9-2=7
Bài 1:
Thay x=1 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)
Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=3\)
Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(0\right)=2\cdot0^2-5=-5\)
Thay x=2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(2\right)=2\cdot2^2-5=8-5=3\)
Thay \(x=\dfrac{1}{2}\) vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(\dfrac{1}{2}\right)=2\cdot\left(\dfrac{1}{2}\right)^2-5=2\cdot\dfrac{1}{4}-5=-\dfrac{9}{2}\)
Vậy: f(1)=-3; f(-2)=3; f(0)=-5; f(2)=3; \(f\left(\dfrac{1}{2}\right)=-\dfrac{9}{2}\)
Bài 1:
\(f(x)=2x^2-5\) thì:
$f(1)=2.1^2-5=-3$
$f(-2)=2(-2)^2-5=3$
$f(0)=2.0^2-5=-5$
$f(2)=2.2^2-5=3$
$f(\frac{1}{2})=2(\frac{1}{2})^2-5=\frac{-9}{2}$
Ta có: f(-1) = 3.(-1)2 – 1 = 3.1- 1 = 2
f(-2) = 3.(-2)2 – 1 = 3.4 – 1 = 11
f(-3) = 3.(-3)2 – 1 = 3.9 – 1 = 26
f(0) = 3.02 - 1 = 0 - 1 = -1
Chọn (A).
\(f\left(-1\right)=3\cdot\left(-1\right)^2-1=2\\ f\left(1\right)=3\cdot1^2-1=2\\ f\left(2\right)=3\cdot2^2-1=11\\ f\left(\dfrac{5}{2}\right)=3\cdot\left(\dfrac{5}{2}\right)^2-1=3\cdot\dfrac{25}{4}-1=\dfrac{71}{4}\)
\(f\left(-1\right)=3\cdot1-1=2\)
\(f\left(1\right)=3\cdot1^2-1=2\)
\(F\left(2\right)=3\cdot2^2-1=11\)
\(f\left(\dfrac{5}{2}\right)=3\cdot\dfrac{25}{4}-1=\dfrac{71}{4}\)