Tính \(\sqrt{13};\sqrt{1};\sqrt{3};\sqrt{\sqrt{7}};\sqrt{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(A^2=13+\sqrt{7+\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7+....}}}}}\)
=>\(\left(A^2-13\right)^2=7+\sqrt{13+\sqrt{7+\sqrt{13+\sqrt{7...}}}}\)
=>\(\left(A^2-13\right)^2=7+A\)
Đến đây tách ra giải PT bậc 4 nha!
Gọi A= \(\sqrt{5-\sqrt{13+2\sqrt{11}}}\) - \(\sqrt{5+\sqrt{13+2\sqrt{11}}}\)
Lấy A bình phương rồi áp dụng hằng đẳng thức số 2 sẽ ra:
A^2 = \(10-\) \(2\sqrt{25-\left(13+2\sqrt{11}\right)}\)
= \(10-2\sqrt{11-2\sqrt{11}+1}\)
= \(10-2\sqrt{\left(\sqrt{11}-1\right)^2}\)
= \(12-2\sqrt{11}\)
=\(11-2\sqrt{11}+1\)
= \(\left(\sqrt{11}-1\right)^2\)
Suy ra A= \(\sqrt{11}-1\)
\(a=\sqrt{5-\sqrt{13+2\sqrt{11}}}\); \(b=\sqrt{5+\sqrt{13+2\sqrt{11}}}\)dễ thấy \(a< b\)
ta có \(a^2+b^2=10;a.b=\left(\sqrt{11}-1\right)^{ }\).
Từ đây ta có \(\left(a-b\right)^2=\left(\sqrt{11}-1\right)^2\)kết hợp với a<b => a-b=1-\(\sqrt{11}\)
https://olm.vn/hoi-dap/detail/7291365157.html
tham khảo! bài này mk làm ở đó hơi thieuus bạn chỉ cần + ... là đc
\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13...}}}}\)
\(\Rightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13...}}}\)
\(\Rightarrow x^4-10x^2+25-13=x\)
\(\Leftrightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+3\right)\left(x+1\right)\left(x-1\right)-1\right]=0\)
Dễ thấy \(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13...}}}}>\sqrt{4}=2\)nên \(\left(x+3\right)\left(x+1\right)\left(x-1\right)-1>5\cdot3\cdot1-1=14>0\)nên x = 3
đặt\(a=\sqrt[3]{5+2\sqrt{13}}\\ b=\sqrt[3]{5-\sqrt{13}}\)
ta có \(A^3=a^3+3ab\left(a+b\right)+b^3=5+2\sqrt{13}+5-2\sqrt{13}\\ \)
<=>\(A^3=10+3\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\cdot A\)
<=>\(A^3=10-9A\)
<=>\(A^3+9A-10=0\)\(\)
<=>\(A^3+10A-A-10=0\)
<=>\(A\left(A^2-1\right)+10\left(A-1\right)=0\)
<=>\(\left(A-1\right)\left(A^2+A+10\right)=0\)
Vì \(A^2+A+10>0\left(\forall A\right)\)
\(=>A-1=0\\ A=1\)
Đặt\(a=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\Rightarrow a^3=\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\right)^3=5+2\sqrt{13}+5-2\sqrt{13}+3.\sqrt[3]{\left(5+2\sqrt{13}\right)\left(5-2\sqrt{13}\right)}\left(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\right)\)\(=10+3.\sqrt[3]{-27}a=10-9a\Rightarrow a^3+9a-10=0\Leftrightarrow\left(a-1\right)\left(a^2+a+10\right)=0\)
Dễ thấy \(a^2+a+10>0\forall a\inℝ\)nên a - 1 = 0 hay a = 1
Vậy \(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}=1\)
\(\Rightarrow B^2=5+\sqrt{13+B}\Rightarrow\left(B^2-5\right)^2=13+B\)
\(\Leftrightarrow B^4-10B^2-B+12=0\)
\(\Leftrightarrow\left(B-3\right)\left(B^3+3B^2-B-4\right)=0\)
\(\Leftrightarrow B=3\text{ hoặc }B^3+3B^2-B-4=0\text{ (1)}\)
Lấy máy tính thấy (1) có 2 nghiệm âm và một nghiệm B = 1,11....
Mà \(B>\sqrt{5}>2>0\) nên loại hết các nghiệm của (1) :))
Vậy B = 3.
\(\Rightarrow B^2=5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}\left(B>\sqrt{4}=2\right)\)
\(B^4=25+13+\sqrt{5+\sqrt{13+...}}+2.5.\sqrt{13+\sqrt{5+\sqrt{13+...}}}\)
\(B^4=38+B+10\left(B^2-5\right)\)
\(B^4=10B^2-50+B+38=10B^2+B-12\)
\(\Rightarrow B^4-10B^2-B+12=0\)
\(\Leftrightarrow\left(B-3\right)\left(B^3+3B^2-B-4\right)=0\)
\(\Leftrightarrow\left(B-3\right)\left[B^2\left(B+3\right)-\left(B+3\right)-1\right]=0\)
\(\Leftrightarrow\left(B-3\right)\left[\left(B+3\right)\left(B-1\right)\left(B+1\right)-1\right]=0\left(1\right)\)
Vì B > 2 =>\(\left[\left(B+3\right)\left(B-1\right)\left(B+1\right)-1\right]>0\)
Do đó, (1) => B - 3 = 0 => B = 3 (TMĐK)
- Nếu có 2 dấu căn: \(K=\sqrt{5+\sqrt{13}}\approx2,9335\) có 1 chữ số 9 đầu tiên ở phần thập phân (1)
- Nếu có 3 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5}}}\approx2,9838\)(1)
- Nếu có 4 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13}}}}\approx2,9986\) (2)
- Nếu có 5 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5}}}}}\approx2,99966\)(3)
- Nếu có 6 dấu căn: \(K=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13}}}}}}\approx2,999971\)(4)
...
Vậy nếu có n (n là số tự nhiên lớn hơn 2) dấu căn thì \(K\approx2,99...9\)(n - 2 chữ số 9).
ĐK x> \(\sqrt{5+\sqrt{13}}\)
bình phương 2 vế ta được \(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+....}}}\)
bình phương 2 vế ta được \(x^4=25+13+\sqrt{5+\sqrt{13+...}}+10\sqrt{13+\sqrt{5+\sqrt{13...}}}\)
đặt x=\(\sqrt{5+\sqrt{13+...}}\)
=> \(x^4=25+13+x+10\sqrt{13+x}\)
=> \(x^4=38+x+10\sqrt{13+x}\)
giai pt => x=3 (nhận)
vậy K=3