1/ cho biểu thức 4x hãy lý luận để chứng tỏ biểu thức đó khôg có gía trị lớn nhất không có giá trị nhỏ nhất
2/ hãy dùng đồ thị để chứng tỏ rằng biểu thức 5/x không có giá trị lớn nhất, không có giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 2x^2 + y^2 + 2xy - 4x - 2016
C = (x^2 + 2xy + y^2) + (x^2 - 4x + 4) - 2020
C = (x + y)^2 + (x - 2)^2 - 2020
(x+y)^2 > 0; (x - 2)^2 > 0
C > -2020
dấu "=" xảy ra khi x + y = 0 và x - 2 = 0
<=> x = 2; y = -2
\(x^2+2\ge2\Rightarrow\frac{6}{x^2+2}\le\frac{6}{2}=3\)
Vay Max D=3, dau = xay ra khi x=0
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
\(a)\) Ta có :
\(A=\frac{1}{x^2-4x+7}\)
\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)
\(A=\frac{1}{\left(x-2\right)^2+3}\)
Lại có :
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)
\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(f\left(x\right)=x^2-4x+7\)
\(f\left(x\right)=\left(x^2-4x+4\right)+3\)
\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm
Chúc bạn học tốt ~
TuanMinhAms sai rồi bn
để A lớn nhất \(\Rightarrow\left|x-2013\right|+2\) bé nhất
\(\left|x-2013\right|\ge0\Rightarrow\left|x-2013\right|+2\ge2\)
dấu "=" xảy ra khi \(\left|x-2013\right|=0\Rightarrow x=2013\)
khi đó GTLN của A = \(\frac{2026}{2}=1013\)
p/s: sai mk góp ý ko pk soi bài hay xúc phạm bn nha =]