\(\dfrac{45^{10}.5^{20}}{75^{15}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5^2\right)^{15}}=\dfrac{3^{20}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{30}}=3^5=243\)
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5^2\right)^{15}}=\dfrac{3^{20}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{30}}=3^5=243\\ \dfrac{6^6+6^3+3^3+3^6}{-73}=\dfrac{46656+216+27+729}{-73}=-\dfrac{47628}{73}\\ \dfrac{27^7+3^{15}}{9^9-27}=\dfrac{\left(3^3\right)^7+3^{15}}{\left(3^2\right)^9-3^3}=\dfrac{3^{21}+3^{15}}{3^{18}-3^3}=\dfrac{3^{15}\left(3^6+1\right)}{3^3\left(3^{15}-1\right)}=\dfrac{3^5\cdot730}{3^{15}-1}\\ \dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}\\ =\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(5^2\cdot3\right)^{15}}\\ =\dfrac{\left(3^2\right)^{10}\cdot5^{10}\cdot5^{20}}{\left(5^2\right)^{15}\cdot3^{15}}\\ =\dfrac{3^{20}\cdot5^{30}}{5^{30}\cdot3^{15}}\\ =3^5\\ =243\)
Giải:
\(\dfrac{45^{10}.5^{20}}{75^{15}}\)
\(=\dfrac{\left(3.3.5\right)^{10}.5^{20}}{\left(3.5.5\right)^{15}}\)
\(=\dfrac{3^{10}.3^{10}.5^{10}.5^{20}}{3^{15}.5^{15}.5^{15}}\)
\(=\dfrac{3^{20}.5^{30}}{3^{15}.5^{30}}\)
\(=3^5=243\)
Vậy giá trị của biểu thức trên là 243.
Chúc bạn học tốt!!!
\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{3^{20}.5^{30}}{3^{15}.5^{30}}=3^5=243\)
\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5\)
\(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{2^3.3^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}\) =\(2^3.8^5\)
M=\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{4^{20}\left(2^{20}+1\right)}{4^{25}+4^{15}}=\dfrac{4^{20}\left(2^{20}+1\right)}{4^{15}\left(4^{10}+1\right)}=\dfrac{2^{20}+1}{4^{10}+1}\)
T=\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{9^{10}.5^{30}}{25^{15}.3^{15}}=\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
a)\(\dfrac{6^6+6^3.3^3+3^6}{-73}\)\(=\dfrac{2^6.3^6+2^3.3^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^6+3^6.1}{-73}\)
\(=\dfrac{3^6.\left(2^6+2^3+1\right)}{-73}=\dfrac{3^6\left(64+8+1\right)}{-73}=^{ }\)\(\dfrac{3^6.73}{-73}=\dfrac{3^6}{-1}=-3^6\)
b)\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=\dfrac{2^{40}}{2^{30}}=2^{10}=1024\)
c)\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}=\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
\(a,\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}=\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
\(b,\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}=\dfrac{\left(0,4.2\right)^5}{\left(0.4\right)^6}=\dfrac{\left(0.4\right)^5.2^5}{\left(0,4\right)^6}=\dfrac{2^5}{0,4}=\dfrac{32}{0,4}=80\)
a,\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{3^{20}.5^{30}}{3^{15}.3^{30}}=3^5=243\)
b,\(\dfrac{\left(0,8\right)^5}{0,4^6}=\dfrac{0,4^5.2^5}{0,4^6}=\dfrac{2^5}{0,4}=80\)
\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(5.3^2\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\dfrac{5^{21}.3^{20}}{5^{30}.3^{15}}=\dfrac{1.3^5}{5^9.1}=\dfrac{3^5}{5^9}\)
Mk làm hơi tắt còn kết quả mk vẫn để lũy thừa vì nếu => số
Chúc bn học tốt