: Chứng minh rằng:
n2 (n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n.
(trình bày đày đủ ko bỏ bước nào mình tick)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có n 2 (n + 1) + 2n(n + 1) = ( n 2 + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)
Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2
⇒ n(n + 1) ⋮ 2
n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3
⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1
vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
n(n + 1)(2n + 1) chia hết cho 6
n(n + 1)(2n + 1) chia hết cho 2 và 3
n(n + 1) là tích 2 số tự nhiên liên tiếp
Nên n(n + 1) chia hết cho 2 < = > n(n + 1)(2n + 1) chia hết cho 2
n chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 1 => 2n + 1 chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 2 => n + 1 chia hết cho 3 => Tích chia hết cho 3
< = > n(n + 1)(2n + 1) chia hết cho 3
UCLN(2,3) = 1
Do đó n(n + 1)(2n + 1) chia hết cho 2.3 = 6
=> ĐPCM