cho \(\Delta\)ABC có 3 góc nhọn, các đường cao AA' ,BB' ,CC' và trực tâm H.
tính tổng: \(\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)
mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)
\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)
vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA giao điểm Cx tại I
\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật
\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)
Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC
\(\Rightarrow\)BD2 \(\le\)( BC + CD )2
\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2
\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2
\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2
\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2 . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC
tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC
4AA'2 \(\le\)( AB + AC )2 - BC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC
Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)
\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều
c)Vẽ Cx CC’. Gọi D là điểm đối xứng của A qua Cx
-Chứng minh được góc BAD vuông, CD = AC, AD = 2CC’
ta có: BD BC + CD
-BAD vuông tại A nên: AB2+AD2 = BD2
AB2 + AD2 >= (BC+CD)2
AB2 + 4CC’2 >= (BC+AC)2
4CC’2 >=(BC+AC)2 – AB2
Tương tự: 4AA’2 >= (AB+AC)2 – BC2
4BB’2 (AB+BC)2 – AC2
4(AA’2 + BB’2 + CC’2)>= (AB+BC+AC)2
Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi
b)Do AI là phân giác
=>\(\frac{IB}{IC}=\frac{AB}{AC}\)
Do IN là phân giác=>\(\frac{AN}{BN}=\frac{AI}{BI}\)
Do IM là phân giác
=>\(\frac{CM}{AM}=\frac{CI}{AI}\)
=>\(\frac{BI}{CI}\cdot\frac{AN}{BN}\cdot\frac{CM}{AM}=\frac{AB}{AC}\cdot\frac{AI}{BI}\cdot\frac{CI}{AI}=\frac{AB}{AC}\cdot\frac{CI}{BI}=1\)
=>AN.BI.CM=BN.IC.AM
A=(\frac{m-1}{1}+...+\frac{m-(m-1)}{m-1}+\frac{m-m}{m})+(\frac{1}{m-1}+\frac{2}{m-2}+...+\frac{m-2}{2}+\frac{m-1}{1})