Tìm x,y biết rằng:
a) x/5 = y/3 và x^2-y^2=4 (x,y>0)
giúp mik với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử `(x+1)^2 >= 4x` là đúng.
Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`
`<=>x^2+1>=2x`
`<=>x^2-2x+1>=0`
`<=> (x-1)^2>=0 forall x`.
Vậy điều giả sử là đúng.
b) `x^2+y^2+2 >=2(x+y)`
`<=> (x^2-2x+1)+(y^2-2y+1) >=0`
`<=>(x-1)^2+(y-1)^2>=0 forall x,y`
c) `(1/x+1/y)(x+y)>=4`
`<=> (x+y)/(xy) (x+y) >=4`
`<=> (x+y)^2 >= 4xy`
`<=> x^2+2xy+y^2>=4xy`
`<=> (x-y)^2>=0 forall x,y > 0`
d) `x/y+y/x>=2`
`<=> (x^2+y^2)/(xy) >=2`
`<=> x^2+y^2 >=2xy`
`<=> (x-y)^2>=0 \forall x,y>0`.
a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)
=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0
=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)
b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)
=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)
=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)
c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)(vì x>0,y>0)
=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)
d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)
=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)
Mình làm hơi tắt mong bạn thông cảm nhé
Chúc bạn học tốt
NHỚ K CHO MIK
x(y-2)=3
=>y-2=3:x
=>y=3:x+2
để x,y thuộc Z=>x thuộc Ư(3)=\(\hept{\begin{cases}\\\end{cases}1;-1;3;-3}\)
ta có bảng sau:
x 1 -1 3 -3
y 5 -1 3 1
y
Bài 2 :
a, \(\left|x-\frac{5}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}< \frac{1}{3}\\x-\frac{5}{3}< -\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 2\\x< \frac{4}{3}\end{cases}}}\)
b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\orbr{\begin{cases}\frac{2}{5}< x-\frac{7}{5}< \frac{3}{5}\\\frac{2}{5}< -x+\frac{7}{5}< \frac{3}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{9}{5}< x< 2\\1>x>\frac{4}{5}\end{cases}}\)
Tìm các số nguyên x, y biết:
a) x . y = 3
b) x . (y + 1) = 5
c) (x – 2) . (y + 3) = 7
giúp mik với ạ
a,x.y=3=1x3=3x1=-1x(-3)=-3x(-1).
Vậy (x,y)=(1,3)=(3,1)=(-1,-3)=(-3,-1)
b,x.(y+1)=5=1x5=5x1=-1x(-5)=-5x(-1)
=>
x | 1 | 5 | -1 | -5 |
y+1 | 5 | 1 | -5 | -1 |
y | 4 | 0 | -6 | -2 |
Vậy (x,y)=(1,4)=(5,0)=(-1,-6)=(-1,-2).
c,(x-2)(y+3)=7=1x7=7x1=-1x(-7)=-7(-1)
=>
x-2 | 1 | 7 | -1 | -7 |
y+3 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 4 | -2 | -10 | -4 |
Vậy (x,y)=(3,4)=(9,-2)=(1,-10)=(-5,-4).
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\) => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)
=\(\frac{105+9}{16}=\frac{57}{8}\)
b)tương tự câu a
a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)
=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)
Lại có 3x - 2y + z = 105
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\)
\(=\frac{105+1}{4}=\frac{106}{4}=26,5\)
=> x = 52 ; y = 77,5 ; z = 104
b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)
Lại có x2 - y2 + 2z2 = 108
=> 4k - 9k + 2.16k = 108
=> -5k + 32k = 108
=> 27k = 108
=> k = 4
=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8
Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu
=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)
Ta có: \(\frac{x}{5}\)= \(\frac{y}{3}\)và x2-y2=4
=> \(\frac{x^2}{25}\)= \(\frac{y^2}{9}\)
Áp dụng t/c DTSBN, ta có:
\(\frac{x^2}{25}\)= \(\frac{y^2}{9}\)= \(\frac{x^2-y^2}{25-9}\)= \(\frac{4}{16}\)= \(\frac{1}{4}\)
=> \(\frac{x}{5}\)= \(\frac{y}{3}\)= \(\frac{1}{4}\)
=> x=\(\frac{5}{4}\); y=\(\frac{3}{4}\)