K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Ta có \(A=\dfrac{2x+3y}{2x+y+2}\Leftrightarrow2Ax+Ay+2A-2x-3y=0\Leftrightarrow2A=2x-2Ax+3y-Ay\Leftrightarrow2A=2x\left(1-A\right)+y\left(3-A\right)\Leftrightarrow\left(2A\right)^2=\left[2x\left(1-A\right)+y\left(3-A\right)\right]^2\left(1\right)\)Áp dụng bđt bunhiacopski ta có \(\left[2x\left(1-A\right)+y\left(3-A\right)\right]^2\le\left(4x^2+y^2\right)\left[\left(1-A\right)^2+\left(3-A\right)^2\right]\Leftrightarrow\left(2A\right)^2\le1.\left(1-2A+A^2+9-6A+A^2\right)\Leftrightarrow4A^2\le2A^2-8A+10\Leftrightarrow2A^2+8A-10\le0\Leftrightarrow A^2+4A-5\le0\Leftrightarrow A^2-A+5A-5\le0\Leftrightarrow A\left(A-1\right)+5\left(A-1\right)\le0\Leftrightarrow\left(A-1\right)\left(A+5\right)\le0\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}A-1\le0\\A+5\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A-1\ge0\\A+5\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}A\le1\\A\ge-5\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge1\\A\le-5\end{matrix}\right.\left(ktm\right)\end{matrix}\right.\)

Vậy \(-5\le A\le1\)

Vậy GTNN của A là -5

GTLN của A là 1

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

Áp dụng PP tìm điểm rơi và BĐT Cauchy cho các số dương:

\(x^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3x\left(\frac{\sqrt{2}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)

\(y^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3y\left(\frac{\sqrt{3}}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)

\(z^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3+\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^3\geq 3z\left(\frac{1}{2\sqrt{2}+3\sqrt{3}+1}\right)^2\)

Cộng theo vế:

\(P+\frac{2}{(2\sqrt{2}+3\sqrt{3}+1)^2}\geq \frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}(2x+3y+z)=\frac{3}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)

\(\Rightarrow P\geq \frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)

Vậy \(P_{\min}=\frac{1}{(2\sqrt{2}+3\sqrt{3}+1)^2}\)

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

9 tháng 8 2016

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

9 tháng 8 2016

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)