K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

Bn chứng minh nó chia hết cho 6 và 7 là đc nhé! hihi

18 tháng 12 2017

Mong mọi người trả lời gấp! Mai em thi rồi ạ!

12 tháng 1 2017

Bài 1 :

chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42

ta thấy 42 = 2 x 3 x  7

A chia hết 42 suy ra A phải chia hết cho 2;3;7

mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2  (1)

số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )

suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )

A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3 

A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3 

suy ra A chia hết cho 3 ( 2 )

ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )

suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )

A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )

A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7

A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7 

suy ra A chia hết cho 7 (3)

từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7 

suy ra A chia hết cho 42 ( điều phải chứng minh )

10 tháng 11 2017

A = (2+2^2)+(2^3+2^4)+....+(2^59+2^60)

   = 2.3 + 2^3.3 + .... + 2^59 .3 = 3.(2+2^2+....+2^59) chia hết cho 3

A = (2+2^2+2^3)+(2^4+2^5+2^6)+.....+(2^58+2^59+2^60)

   = 2.7 + 2^4.7 + .... +2^58.7 = 7.(2+2^4+....+2^58) chia hết cho 7

Dễ thấy A chia hết cho 2 mà lại có A chia hết cho 3;7 ( cm trên )

=> A chia hết cho 2.3.7 = 42 ( vì 2;3;7 là 2 số nguyên tố cùng nhau ) 

15 tháng 11 2017

ko có cơ sở

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

22 tháng 11 2015

A=21+22+23+...+261+262+263

A=(21+22+23)+...+(261+262+263)

A=14+...+261.(21+22+23)

A=14+...+261.14 chia hết cho 14

tick ủng hộ mình nha

28 tháng 12 2015

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

28 tháng 12 2015

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4

7 tháng 11 2021

\(A=2+2^2+2^3+......+2^{60}\)

\(A=2^1+2^2+2^3+.......+2^{60}\)

\(A=\left(2^{60}-2^1\right):\left(2^2\right)\)

\(A=2^{58}\)

DD
7 tháng 11 2021

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\).

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=\left(2+2^2+2^3\right)+2^3\left(2+2^2+2^3\right)+...+2^{57}\left(2+2^2+2^3\right)\)

\(=14\left(1+2^3+...+2^{57}\right)⋮14\)

Ta thấy \(\left(3,14\right)=1\)nên \(A\)chia hết cho \(3.14=42\).

26 tháng 10 2023

\(A=2^1+2^2+2^3+...+2^{60}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{59}+2^{60})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+...+2^{58}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+...+2^{58}\cdot6\\=6\cdot(1+2^2+2^4+...+2^{58})\)

Vì \(6\cdot(1+2^2+2^4+...+2^{58})\vdots6\)

nên \(A\vdots6(dpcm)\)

26 tháng 10 2023

\(A=2^1+2^2+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=\left(2+4\right)+2^2\cdot\left(2+4\right)+...+2^{58}\cdot\left(2+4\right)\)

\(A=6+2^2\cdot6+...+2^{58}\cdot6\)

\(A=6\cdot\left(1+2^2+...+2^{58}\right)\) ⋮ 6 

Vậy A ⋮ 6