K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2021
Bang 88va87 tong 5
11 tháng 1 2015

Đặt 11...1(n chữ số 1)=a do đó 55...56(n chữ số 5)=55...5+1=5a+1 và 10^n=99...9+1=9a+1. Khi đó A = a.(9a+1)+5a+1=9a^2+6a+1=(3a+1)^2 là số cp

5 tháng 9 2021

fg8vwhi878tgbbhtfcbhyt5red

31 tháng 7 2023

a) \(A=111...1555...56\) (n cs 1, n-1 cs 5)

\(A=111...1000...0+555...50+6\) (n cs 1, n cs 0 (không tính số 0 ở số 555...50), n-1 cs 5)

\(A=111...1.10^n+555...5.10+6\) (n cs 1, n-1 cs 5)

\(A=\dfrac{999...9}{9}.10^n+\dfrac{5}{9}.999...9.10+6\) (n cs 9 ở phân số thứ nhất, n-1 cs 9 ở phân số thứ 2)

\(A=\dfrac{10^n-1}{9}.10^n+\dfrac{5}{9}.\left(10^{n-1}-1\right).10+6\)

\(A=\dfrac{\left(10^n\right)^2-10^n+5.10^n-50+54}{9}\)

\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)

\(A=\left(\dfrac{10^n+2}{3}\right)^2\)

 Hiển nhiên \(3|10^n+2\) vì \(10^n+2\) có tổng các chữ số bằng 3, suy ra A là số chính phương.

Câu b áp dụng kĩ thuật tương tự nhé bạn.

 

22 tháng 7 2019

Ta có :

11...1 555...5 6 (n chữ số 1; n -1 chữ số 5)

= 111…1 555…55 + 1 (n chữ số 1; n chữ số 5)

= 111…1 000…00 + 555….55 + 1 (n chữ số 1; n chữ số 0; n chữ số 5)

= 111….1 x 100…0 + 5.111…11 + 1 (n chữ số 1; n chữ số 0)

= 111…1 x (999…9 + 1) + 5.111…11 + 1

= 111…1 x 999…9 + 111…1 + 5.111…11 + 1

= (333…3)² + 6.111…1 + 1 (n chữ số 3)

= (333…3)² + 2.333…3.1 + 1

= (333…3 + 1)2

= 333…342 (n – 1 chữ số 3) là một số chính phương.    (đpcm)