K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{144}{13}\left(cm\right)\\AH=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)

3 tháng 9 2021

C.ơn bn nhìu nha

 

Bài 2: 

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)

6 tháng 10 2021

cảm ơn nhiều ạ

Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)

=>\(\dfrac{2.4}{HB}=\dfrac{3}{4}\)

=>\(HB=2.4\cdot\dfrac{4}{3}=3,2\left(cm\right)\)

ΔABH vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(AB^2=3,2^2+2,4^2=16\)

=>\(AB=\sqrt{16}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BC=\dfrac{4^2}{3,2}=5\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-4^2=9\)

=>\(AC=\sqrt{9}=3\left(cm\right)\)

Chu vi tam giác ABC là:

3+4+5=12(cm)

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)

14 tháng 10 2021

Xét tg AHC vg tại H: \(\sin\widehat{C}=\dfrac{AH}{AC}=\sin30^0=\dfrac{1}{2}\Leftrightarrow AC=4\)

Xét tg ABC vg tại A: \(\tan\widehat{C}=\tan30^0=\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{3}\Leftrightarrow AB=\dfrac{4\sqrt{3}}{3}\)

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=81\)

hay AB=9cm

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

hay \(\widehat{B}=53^0\)

17 tháng 8 2021

Chị ơi còn câu b ?

 

3 tháng 10 2021

\(a,AB=\sqrt{BC^2-AC^2}=9\left(cm\right)\)

\(b,\)Áp dụng HTL:

\(AH\cdot BC=AC\cdot AB\\ \Rightarrow AH=\dfrac{12\cdot9}{15}=7,2\left(cm\right)\)

Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)

Mà \(BD+DC=BC=15\Rightarrow\dfrac{5}{4}DC=15\Rightarrow DC=12\left(cm\right)\)

Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=9,6\left(cm\right)\)

\(\Rightarrow HD=CD-HC=2,4\left(cm\right)\)

Áp dụng pytago: \(AD=\sqrt{AH^2+DH^2}=\dfrac{12\sqrt{10}}{5}\left(cm\right)\)

8 tháng 10 2023

Ta có:

\(sinC=\dfrac{AB}{BC}\Rightarrow sin30^o=\dfrac{AB}{5}\)

\(\Rightarrow AB=5\cdot sin30^o=\dfrac{5}{2}\left(cm\right)\) 

Mà: \(tanC=\dfrac{AB}{AC}\Rightarrow tan30^o=\dfrac{\dfrac{5}{2}}{AC}\)

\(\Rightarrow AC=\dfrac{\dfrac{5}{2}}{tan30^o}=\dfrac{5\sqrt{3}}{2}\left(cm\right)\) 

Theo hệ thức đường cao cạnh góc vuông và cạnh huyền ta có:

\(AB\cdot AC=AH\cdot BC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{\dfrac{5}{2}\cdot\dfrac{5\sqrt{3}}{2}}{5}=\dfrac{5\sqrt{3}}{4}\left(cm\right)\)

Ta có: \(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{5}{2}\right)^2}{5}=\dfrac{5}{4}\left(cm\right)\\HC=\dfrac{AC^2}{BC}=\dfrac{\left(\dfrac{5\sqrt{3}}{2}\right)^2}{5}=\dfrac{15}{4}\left(cm\right)\end{matrix}\right.\)   

8 tháng 10 2023

loading... a) ∠ABC = 90⁰ - 30⁰ = 60⁰

sinC = AB/BC

⇒ AB = BC.sinC

= 5.sin30⁰

= 5.1/2

= 5/2 (cm)

sinB = AC/BC

⇒ AC = BC.sinB

= 5.sin60⁰

= 5√3/2 (cm)

Ta có:

AH.BC = AB.AC

⇒ AH = AB.AC : BC

= 5/2 . 5√3/2 : 5

= 5√3/4 (cm)

AB² = BH.BC

⇒ BH = AB² : BC

= (5/2)² : 5

= 5/4 (cm)

⇒ CH = BC - BH

= 5 - 5/4

= 15/4 (cm)

b) Do AH ⊥ BC (gt)

⇒ CH ⊥ AM

∆ACM vuông tại C có CH là đường cao

⇒ AC² = AH . AM (1)

∆ABC vuông tại A có AH là đường cao

⇒ AC² = CH . CB (2)

Từ (1) và (2) ⇒ AH.AM = CH.CB