Cho tam giác ABC vuông tại A, đường cao AH. Gọi M và N lần lượt là trung điểm của HA và HC. CMR; BM vuông góc với AN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HN//AB
=>góc NHA=góc HAM
=>góc NHA=góc MHA
=>HA là phân giác của góc NHM
HC vuông góc HA
=>HC là phân giác ngoài của ΔIHN
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔAHB đồng dạng với ΔCHA
=>\(\dfrac{HB}{HA}=\dfrac{AB}{CA}=\dfrac{1}{2}\)
=>AH=2HB
mà AH=2HE
nên HE=HB
Xét ΔHEB vuông tại H có HE=HB
nên ΔHEB vuông cân tại H