K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

\(\left(3^0+3^1+3^2+3^3\right)+3^4\left(3^0+3^1+3^2+3^3\right)+3^8\left(3^0+3^1+3^2+3^3\right)\)

\(=\left(3^0+3^1+3^2+3^3\right)\left(1+3^4+3^8\right)\)

\(=40\left(1+3^4+3^8\right)⋮40\)

\(\Rightarrow dpcm\)

21 tháng 2 2017

1 tháng 2 2017

a,  C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11

=  1 + 3 1 + 3 2  +  3 3 + 3 4 + 3 5  +...+  3 9 + 3 10 + 3 11

=  1 + 3 1 + 3 2 +  3 3 . 1 + 3 1 + 3 2 + ... +  3 9 1 + 3 1 + 3 2

=  1 + 3 1 + 3 2 . 1 + 3 3 + . . . + 3 9

= 13. 1 + 3 3 + . . . + 3 9 ⋮ 13

b,  C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11

=  1 + 3 1 + 3 2 + 3 3 +  3 4 + 3 5 + 3 6 + 3 7 +  3 8 + 3 9 + 3 10 + 3 11

=  1 + 3 1 + 3 2 + 3 3 +  3 4 1 + 3 1 + 3 2 + 3 3 +  3 8 1 + 3 1 + 3 2 + 3 3

=  1 + 3 1 + 3 2 + 3 3 . 1 + 3 4 + 3 8

= 40. 1 + 3 4 + 3 8 ⋮ 40

23 tháng 10 2023

A=1+3+3^2+3^3+...+3^98+3^99+3^100

A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

A=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy A chia hết cho 13

23 tháng 10 2023

câu b đâu bạn ?

 

24 tháng 7 2023

\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)

Ý a phải chia hết cho 13 chứ em?

b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)

=40(1+...+3^8) chia hết cho 40

a: C ko chia hết cho 15 nha bạn

13 tháng 5 2018

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

17 tháng 12 2021

a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)

\(=4\left(1+...+3^{10}\right)⋮4\)

22 tháng 10 2023

\(B=3^1+3^2+3^3+...+3^{300}\\=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{299}+3^{300})\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+...+3^{299}\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{299}\cdot4\\=4\cdot(3+3^3+3^5+...+3^{299})\)

Vì \(4\cdot(3+3^3+3^5+...+3^{299})\vdots2\)

nên \(B\vdots2\)

22 tháng 10 2023

B=(3+32)+(33+34)+...+(3299+3300)

B=3(1+3)+33(1+3)+...+3299(1+3)

B=3.4+33.4+...+3299.4

B=4(3+33+...+3299) chia hết cho 2 vì 4 chia hết cho 2

vậy B chia hết cho 2

13 tháng 7 2016

\(16^{10}+32=160000000000+32.\)

                    \(=160000000032\)

Vì 160000000032 chia hết cho 3 nên 1610 + 32 chia hết cho 3.

mình nhé.Mình cảm ơn nhiều,Bài này đúng 100%

20 tháng 9 2016

\(A=n^3-n\\ =n\left(n^2-1\right)\\ =n\left(n-1\right)\left(n+1\right)\)

n; n-1; n+1 là 3 số tự nhiên liên tiếp (1)

=> 1 trong 3 số trên chia hết cho 2

=> A chia hết cho 2 (2)

Từ (1) => một trong 3 số trên chia hết cho 3

=> A chia hết cho 3 (3)

2 và 3 là 2 số nguyên tố cùng nhau (4)

Từ (2); (3); (4) => A chia hết cho 6 (đpcm)

20 tháng 9 2016

n- n 

= n(n2 - 1) = n(n2 - 12)

= n(n - 1)(n + 1)

Có n - 1 ; n ; n + 1 là 3 số nguyên liên tiếp (n thuộc Z)

=> trong 3 số đó luôn có ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3

=> Tích của chúng chia hết cho 6

=> n(n - 1)(n + 1) chia hết cho 6

=> n3 - n chia hết cho 6 (Đpcm)