K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMD và ΔCMB có

\(\widehat{DAM}=\widehat{BCM}\)

MA=MC

\(\widehat{DMA}=\widehat{BMC}\)

Do đó: ΔAMD=ΔCMB

b: Ta có: ΔAMD=ΔCMB

nên MD=MB

hay M là trung điểm của BD

Xét tứ giác ABCD có

M là trung điểm của AC
M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB=DC

26 tháng 12 2017

Xét tam giác ΔAHO và ΔBHO, ta có :

+ \(\widehat{O}\) là góc chung(giả thuyết)

+AH=AB(vì Ot là tia phân giác của góc xOy)

+\(\widehat{AHO}\)=\(\widehat{BHO}\)(giả thuyết)

➩ΔAHO = ΔBHO (c.g.c)(nghĩa là góc.cạnh.góc)

⚠⚠⚠Lưu ý: trường hợp này là góc.cạnh.góc (hoặc là c.g.c) nên theo yêu cầu cần 2 góc và 1 cạnh ; phải đặt đúng theo thứ tự :

Góc đầu tiên;rồi đến cạnh và cuối là góc còn lại

27 tháng 12 2017

ban lam thieu

Bạn kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

a: Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

b: Xét ΔOAC và ΔOBD có

\(\widehat{AOC}\) chung

OA=OB

\(\widehat{OAC}=\widehat{OBD}\)

Do đó; ΔOAC=ΔOBD

Suy ra: AC=BD

1 tháng 8 2015

a,Xét tam giác HBE(H=90 độ) và tam giác ABE(A=90 độ) có:

BE chung

góc HBE= góc ABE

=> tam giác HBE=tam giác ABE( c.huyền .góc nhọn) (đpcm)

b,Vì BE là tia phân giác của góc xBy

Suy ra EB=EA (theo t/c tia phân giác)

AH cắt BE tại K

Xét tam giác EHK và tam giác EAK

Có:

EH=EA(cmt)

góc HEK= góc AEK(2 góc tương ứng)

EK chung

=> Tam giác HEK=tam giác AEK(cgc)

=>HK=AK (1)

=> góc HKB= góc BKA=90 độ (2)

Từ (1) và (2) suy ra BE là đường trung trực của AH (đpcm)

c, Xét tam giác EHC(H=90 độ) và tam giác KAE(A=90 độ)

có :

góc CEH= góc KEA ( 2 góc đối đỉnh)

EH=EA

=> tam giác EHC=tam giác KAE

=>AE<EC(cạnh góc vuông nhỏ hơn cạnh huyền)

 

d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)

\(\widehat{KCB}=\widehat{NCE}\)

mà \(\widehat{MBD}=\widehat{NCE}\)

nên \(\widehat{KBC}=\widehat{KCB}\)

hay ΔKBC cân tại K

=>KB=KC

Ta có: KB+BM=KM

KC+CN=KN

mà KB=KC

và BM=CN

nên KM=KN

=>ΔKNM cân tại K

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB