cho tam giác ABC nhọn có phân giác AD, từ D kẻ đường cao DE , DF . BF cắt CE tại H. CM Ah vuông góc với bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Xét tam giác vuông AHE có FI là đường trung tuyến ứng với cạnh huyền nên IF = IH = IA = AH/2 = 6 : 2 = 3 (cm)
Do IF = IH nên tam giác IHF cân tại I. Vậy thì \(\widehat{IFH}=\widehat{IHF}\)
Lại có \(\widehat{IHF}=\widehat{BHE}\) nên \(\widehat{IFH}=\widehat{BHE}\) (1)
Xét tam giác vuông BFC có FK là đường cao đồng thời là trung tuyến nên KF = KC = KB = BC : 2 = 4 (cm)
Ta cũng có KF = KB nên \(\widehat{HFK}=\widehat{HBK}\) (2)
Ta có \(\widehat{HBE}+\widehat{BHE}=90^o\) (3)
Từ (1), (2), (3) suy ra \(\widehat{IFH}+\widehat{HFK}=90^o\Rightarrow\widehat{IFK}=90^o\)
Xét tam giác vuông IFK, áp dụng định lý Pi-ta-go ta có:
IK2 = IF2 + FK2 = 32 + 42 = 25
\(\Rightarrow IK=5cm.\)
2.
Gọi J là giao điểm của AD và EF.
Xét tam giác AFE có AJ là phân giác đồng thời đường cao nên AFE là tam giác cân tại A.
Vậy nên AJ đồng thời là trung trực của EF.
Lại có D thuộc AJ nên DE = DF. (1)
Xét tam giác AFD và tam giác AED có:
AF = AE
Cạnh AD chung
DF = DE
\(\Rightarrow\Delta AFD=\Delta AED\left(c-c-c\right)\)
\(\Rightarrow\widehat{AFD}=\widehat{AED}\Rightarrow\widehat{BFD}=\widehat{DEC}\)
Lại có \(\widehat{FBD}=180^o-\widehat{BAC}-\widehat{BCA}\)
\(\widehat{DEC}=180^o-\widehat{EDC}-\widehat{CBA}=180^o-\widehat{BAC}-\widehat{BCA}\)
Vậy nên \(\widehat{DBF}=\widehat{DFB}\) hay tam giác DBF cân tại D.
Suy ra DF = DB. (2)
Từ (1) và (2) suy ra DB = DF = DE.
Vậy ΔDEF đều
b) Vì AD là tia phân giác của ∠BAC (gt)
⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o
Vì AD//MC (gt)
⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)
∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)
Xét ΔAMC có:
Hai góc bằng nhau và bằng 60o
⇒ ΔAMC đều
Vậy ΔAMC đều
Còn lại bạn tự làm nhé