Chứng tỏ với mọi a, b thuộc N ta có:
Nếu cho ( a+5b) chia hết cho 7 thì (10a+b) chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Ta có : a+5b chia hết cho 7
=> 4.(a+5b) chia hết cho 5
=> 4a+20b chia hết cho 7
Mà 14a+ 21b chia hết cho 7
=> (14a+21b) - ( 4a+20b)chia hết cho 7
=> 10a+b chia hết cho 7
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Ta có
10a+b=(10a+b+49b)-49b (a,b thuộc N)
Vì 10a+b chia hết cho 7
49b chia hết cho 7
=>10a+b+49b chia hết cho 7
10a+b+49b=10a+50b=10(a+5b)
Vì 10a+b+49b chia hết cho 7
10 không chia hết cho 7
=> a+5b chia hết cho 7(đpcm)
Vậy 10a+b chia hết cho 7 (a,b thuộc N ) thì a+5b chia hết cho 7
Xét tổng:
(10a+b)+4(a+5b)
=(10a+b)+4a+20b
=14a+21b
=7(2a+3b)\(⋮\)7(với mọi a,b\(\in N\)
Vì7(2a+3b)\(⋮\)7\(\Rightarrow\)(10a+b)+4(a+5b)\(⋮\)7
Ta có 10a+7\(⋮7\Rightarrow4\left(a+5b\right)⋮7\)Ma (4,7)=1
\(\Rightarrow a+5b⋮7\)
Ta có:
a+5b chia hết cho 7
=>10.(a+5b)chia hết cho 7
=>10a+50b chia hết cho 7
=>(10a+b)+49b chia hết cho 7(1)
Mà 49 chia hết cho 7 nên 49b chia hết cho 7(2)
Từ (1)và(2), ta có: 10a+b chia hết cho 7
Vậy nếu a,b\(\in\)N và a+5b chia hết cho 7 thì 10a+b cũng chia hết cho 7.
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Giúp mình nha các bạn ơi
Câu hỏi của NGUYỄN MINH ÁNH - Toán lớp 6 - Học toán với OnlineMath