K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Xét phân số dương \(\dfrac{a}{b}\). Không mất tính tổng quát, giả sử \(a>0,b>0,a\ge b\).

Khi đó \(a=b+m\left(m\ge0\right)\). Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1+\dfrac{b}{b+m}+\dfrac{m}{b+m}=1+\dfrac{m+b}{b+m}=1+1=2\)

Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\). Dấu "=" xảy ra khi a = b (m = 0)

11 tháng 12 2017

Gọi một phân số dương bất kì là \(\dfrac{a}{b}\)(a; b > 0) thì phân số nghịch đảo của nó là \(\dfrac{b}{a}\). Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a^2}{ab}+\dfrac{b^2}{ab}=\dfrac{a^2+b^2}{ab}\)

+ Nếu a > b thì a2 + b2 > 2b2 > 2ab. \(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}>2\)

+ Nếu a < b thì a2 + b2 > 2a2 > 2ab. \(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}>2\)

+ Nếu a = b thì a2 + b2 = 2a2 = 2ab. \(\Rightarrow\) \(\dfrac{a^2+b^2}{ab}=2\)

Vậy tổng 1 phân số dương với số nghịch đảo của nó \(\ge\) 2

+ Nếu a = b thì a2

22 tháng 3 2019

\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)

\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)

Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)

2 tháng 9 2019

Gọi a/b với a > 0, b > 0 là phân số đã cho và b/a là phân số nghịch đảo của nó . Không mất tính tổng quát giả sử 0 < a ≤ b.

Đặt b = a + m (m ∈ Z, m ≥ 0)

Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Và Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 (dấu "=" xảy ra khi m = 0)

Suy ra: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6, (dấu "=" xảy ra khi m = 0 hay a = b )

2 tháng 3 2017

Giả sử phân số và nghịch đảo của nó là: \(\frac{a}{b};\frac{b}{a}\)

Do phân số dương nên( a;b) cùng dấu hay a.b>0

Ta có:

\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó: \(\frac{a}{b}+\frac{b}{a}\ge2\)

15 tháng 5 2017

Gọi phân số dương là \(\dfrac{a}{b}\) . ( Không mất tính tổng quát )

Cho \(a>0,\) \(b>0\)\(a\ge b\) . Ta có thể viết \(a=b+m\left(m\ge0\right)\) .

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}=1+\dfrac{m}{b}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}=1+\dfrac{m+b}{b+m}=2\)\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Dấu đẳng thức xảy ra khi \(a=b\left(m=0\right)\)

1 tháng 5 2018

Gọi a/b với a > 0, b > 0 là phân số đã cho và b/a là phân số nghịch đảo của nó . Không mất tính tổng quát giả sử 0 < a ≤ b.

Đặt b = a + m (m ∈ Z, m ≥ 0)

Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 (dấu "=" xảy ra khi m = 0)

Suy ra: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6, (dấu "=" xảy ra khi m = 0 hay a = b )

14 tháng 3 2016

 Gọi phân số đó là a/b (ĐK: a,b # 0, a và b cùng dấu ) 
a/b + b/a ≥ 2 <=> (a² + b ²)/ab ≥ 2 
<=> a² - 2ab + b² ≥ 0 
<=> ( a – b )² ≥ 0 ( Luôn đúng với mọi a, b) 
=> Đpcm 

 

19 tháng 8 2016

mk giải đc nè, tick mk nha!!

Gọi phân số  dương là a/b. Ko mất tính tổng quát, giả sử như: a>0, b>0 và a  > b. Ta có thể viết a=b+m ( m > 0). Ta có:

a/b+b/a=b+m/b+b/m+b=1+m/b+b/b+m >  1+ m/b+m+b/b+m=1+m+b/b+m=2.

Vậy a/b+b/a > 2.

 

14 tháng 3 2017

nói thật thì đó là toán lớp 8, lớp 9 chứ k phải lớp 6

gọi phân số đó là a/b, vì phân số dương => a.b dương. Ta phải đi chứng minh a/b+b/a lớn hơn hoặc bằng 2

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2-ab-ab+b^2}{ab}+2=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}+2\)

\(=\frac{\left(a-b\right)^2}{ab}+2\ge2\)(vì (a-b)^2 lớn hơn hoặc bằng 0 và ab>0 => phân số đầu tiên không âm, suy ra tổng không nhỏ hơn 2)

Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik

10 tháng 6 2015

Giả sử phân số và nghịch đảo của nó là \(\frac{a}{b};\frac{b}{a}\)

Do phân số dương nên \(a;b\)cùng dấu hay \(a.b>0\)

Ta có \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó \(\frac{a}{b}+\frac{b}{a}\ge2\)

15 tháng 2 2018

Đúng rùi

22 tháng 3 2019

Ta gọi phân số đó là \(\frac{a}{b}\) ,vì phân số dương\(\Rightarrow a.b=\)dương .

Ta chúng minh \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2-ab-ab+b^2}{ab}+2=\frac{a\left(a-b\right)-b\left(a-b\right)+2}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}+2\ge2\)

Vì :

\(\left(a-b\right)^2\ge0\) và \(ab>0\)

\(\Rightarrow\)Phân số không âm .

\(\Rightarrow\)Tổng không bé hơn 2