K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2022

`A=(x/[x^2-4]+2/[2-x]+1/[2+x]).[x+2]/2`

`a)ĐK: x \ne +-2`

`b)` Với `x \ne +-2` có:

`A=[x-2(x+2)+x-2]/[(x-2)(x+2)].[x+2]/2`

`A=[x-2x-4+x-2]/[x-2]. 1/2`

`A=[-3]/[x-2]`

`c)x=-1` t/m đk `=>` Thay `x=-1` vào `A` có: `A=[-3]/[-1-2]=1`

8 tháng 11 2023

ko biết

 

Phần II:Tự luận (7đ)Câu Phần II:Tự luận (7đ)Câu 1:  a) Tính:                     b) Cho biểu thức:  *) Tìm điều kiện xác định và rút gọn biểu thức A. *) Tìm các giá trị của x để biểu thức A có giá trị âm.Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1     (d1)                                                     y = (3 – m)x – 2 với m ≠ 3     (d2)a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt  b/ Vẽ...
Đọc tiếp

Phần II:Tự luận (7đ)

Câu Phần II:Tự luận (7đ)

Câu 1:  a) Tính:                     

b) Cho biểu thức:  

*) Tìm điều kiện xác định và rút gọn biểu thức A. 

*) Tìm các giá trị của x để biểu thức A có giá trị âm.

Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1     (d1)

                                                     y = (3 – m)x – 2 với m ≠ 3     (d2)

a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt  

b/ Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ khi m = 0.

c/ Gọi I là giao điểm của hai đồ thị nói trên. Tìm tọa độ của điểm I (bằng phép toán).

d/ Tính góc hợp bởi đường thẳng (d2) với trục Ox khi m = 0.

Câu 3:Từ điểm M ở ngoài (O; R) vẽ hai tiếp tuyến MA, MB với (O) (A, B là 2 

tiếp điểm), vẽ dây AC// OM.

a) Chứng minh OM   AB tại H và suy ra OH.OM = R2.

b) MC cắt (O) tại E. Chứng minh 3 điểm B, O, C thẳng hàng và MH.MO = ME.MC.

c) Vẽ AK BC tại K, gọi N là giao điểm của MC và AK. Chứng minh NA = NK

1:  a) Tính:                   

b) Cho biểu thức:

          *) Tìm điều kiện xác định và rút gọn biểu thức A.

          *) Tìm các giá trị của x để biểu thức A có giá trị âm.

Câu 2: Cho hai hàm số bậc nhất y = (m – 1)x + 2 với m ≠ 1     (d1)

                                                     y = (3 – m)x – 2 với m ≠ 3     (d2)

a/ Tìm giá trị của m để đồ thị của hai hàm số đã cho cắt 

b/ Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng tọa độ khi m = 0.

c/ Gọi I là giao điểm của hai đồ thị nói trên. Tìm tọa độ của điểm I (bằng phép toán).

d/ Tính góc hợp bởi đường thẳng (d2) với trục Ox khi m = 0.

Câu 3:Từ điểm M ở ngoài (O; R) vẽ hai tiếp tuyến MA, MB với (O) (A, B là 2

tiếp điểm), vẽ dây AC// OM.

a)     Chứng minh OM  AB tại H và suy ra OH.OM = R2.

b)    MC cắt (O) tại E. Chứng minh 3 điểm B, O, C thẳng hàng và MH.MO = ME.MC.

c)     Vẽ AKBC tại K, gọi N là giao điểm của MC và AK. Chứng minh NA = NK

mọi người giúp mik với 

1

Câu 2:

a: Để (d1) cắt (d2) thì \(m-1\ne3-m\)

=>\(2m\ne4\)

=>\(m\ne2\)

b: Thay m=0 vào (d1), ta được:

\(y=\left(0-1\right)x+2=-x+2\)

Thay m=0 vào (d2), ta được:

\(y=\left(3-0\right)x-2=3x-2\)

Vẽ đồ thị:

loading...

c: Phương trình hoành độ giao điểm là:

3x-2=-x+2

=>3x+x=2+2

=>4x=4

=>x=1

Thay x=1 vào y=3x-2, ta được:

y=3*1-2=3-2=1

d:

Khi m=0 thì (d2): y=3x-2

Gọi \(\alpha\) là góc tạo bởi (d2): y=3x-2 với trục Ox

y=3x-2 nên a=3

\(tan\alpha=a=3\)

=>\(\alpha\simeq72^0\)

Câu 3:

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>OM\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=R^2\)

b: Ta có: AC//OM

OM\(\perp\)AB

Do đó: AB\(\perp\)AC

=>ΔABC vuông tại A

=>ΔABC nội tiếp đường tròn đường kính BC

mà ΔABC nội tiếp (O)

nên O là trung điểm của BC

=>B,O,C thẳng hàng

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)CM tại E

Xét ΔMBC vuông tại B có BE là đường cao

nên \(ME\cdot MC=MB^2\)(3)

Xét ΔMBO vuông tại B có BH là đường cao

nên \(MH\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(ME\cdot MC=MH\cdot MO\)

24 tháng 12 2017

Bài 1.

a) ( x - 2)2 - ( x + 3)( x - 3)= 17

=> x2 - 4x + 4 - x2 + 9 - 17 = 0

=> -4x - 4 = 0

=> -4( x + 1 ) = 0

=> x = -1

Vậy,...

b)4( x - 3)2 - ( 2x - 1)( 2x + 1) = 10

=> 4( x2 - 6x + 9) - 4x2 + 1 - 10 = 0

=> - 24x + 36 - 9 = 0

=> -24x + 27 = 0

=> -3( 8x - 9) = 0

=> x = \(\dfrac{9}{8}\)

Vậy,...

c) ( x - 4)2 - ( x - 2)( x + 2)= 36

=> x2 - 8x + 16 - x2 + 4 - 36 = 0

=> -8x - 16 = 0

=> -8( x + 2) = 0

=> x = -2

d) ( 2x + 3)2 - ( 2x + 1)( 2x - 1) = 10

=> 4x2 + 12x + 9 - 4x2 + 1 - 10 = 0

=> 12x = 0

=> x = 0

Vậy,...

Bài 2.

\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)

a) ĐKXĐ : ( x + 1)( 2x - 6) # 0

=> 2( x + 1)( x - 3) # 0

=> x # -1 ; x # 3

Vậy,...

b) Để P = 1

=> \(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\)

=> \(\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}=1\)

=> 3x = 2x - 6

=> x = -6 ( thỏa mãn ĐKXĐ)

Vậy,...

Bài 3.

P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)

a) Để P có nghĩa tức P xác định .

ĐKXĐ : x - 1 # 0 => x # 1

* 1 - x2 # 0 => x # 1 ; x # -1

Vậy,...

b) P = \(\dfrac{x}{x-1}+\dfrac{x^2+1}{1-x^2}\)

P = \(\dfrac{x^2+x-x^2-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)( x# 1; x# -1)

c) Để P = -1 thì :

\(\dfrac{1}{x+1}=-1\)

=> -x - 1 = 1

=> x = -2 ( thỏa mãn ĐKXĐ )

Vậy,...

21 tháng 8 2023

\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\) 

a) ĐK: \(x\ne1,x\ge0\)

\(B=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)

\(B=\left[\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(B=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(B=\left[\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(B=\dfrac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2}{2}\)

\(B=-\sqrt{x}\left(\sqrt{x}-1\right)\) 

26 tháng 11 2016

1 a

2c

3b

4d

5c

6c

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)