Chứng tỏ rằng: 520+ 2511+ 1257 chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 6( x + 7y ) = 6x + 42y
Vì 6x + 11y - ( 6x + 42y ) = 6x - 6x + 11y - 42y = -31y mà -31 Chia hết cho 31 nên 6x +11Y - 6( x + 7y) chia hết cho 31 nên 6x + 11Y - ( x + 7y) chia hết cho 31. Vậy mà 6x + 11y chia hết cho 31 nên để 6x + 11y - (x + 7y) chia hết cho 31 thì x + 7y chia hết cho 31(đpcm)
1 + 3 +32 + ... + 311
= [1+3+32] + 33[1+3+32] + ... + 39[1+3+32]
= 13 + 33.13 + ... + 39.13 \(⋮13\)
1 + 3 +32 + ... + 311
= [1+3+32 + 33] + 34[1+3+32 + 33] + .... + 38[1+3+32 + 33]
= 40 + 34.40 + ... + 38.40 \(⋮40\)
Mà UCLN[13, 40] = 1
=> C \(⋮13\cdot40\)
\(\Rightarrow C⋮520\)
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y
6x + 11y chia hết cho 31; 31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31
làm ngược lại
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y cũng phải chia hết cho 31 (ĐPCM)
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
Ta có : 31.(x+2y) = 31x+62y = 5.(6x+11y) + (x+7y)
Do 6x+11y chia hết 31 , suy ra 5.(6x+11y) chia hết 31
suy ra x +7y chia hết 31 (đpcm)
nha
6x+11y+31y chia het cho 31
6x+42y chia het cho 31
6(x+7y) chia het cho 31
vi 6 va 31 nguyen to cung nhau
x+7y chia het cho 31
\(C=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)...+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\\ C=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)...+5^{17}\left(1+5+5^2+5^3\right)\\ C=5\cdot156+5^5\cdot156+...+5^{17}\cdot156\\ C=156\left(5+5^5+...+5^{17}\right)\\ C=12\cdot13\left(5+5^5+...+5^{17}\right)⋮17\)
ta có(^ là dấu mũ):
5^20+25^11+125^7=5^20+5^22+5^21
=5^20+5^20.5^2+5^21.5
=5^20.(1+5^2+5)=5^20.(1+25+5)=5^20.31 chia hết cho 31
Nếu sai chỗ nào thì nhắc mik nhé :)
\(5^{20}+25^{11}+125^7=5^{20}+5^{2^{11}}+5^{3^7}=5^{20}+5^{22}+5^{21}=5^{20}+5^{20}.5^2+5^{20}.5=5^{20}\left(5^2+5+1\right)=5^{20}.31\)Vì \(5^{20}.31⋮31\) nên \(\left(5^{20}+25^{11}+125^7\right)⋮31\)