Cho hình vuông ABCD có M và N theo thứ tự là trung điểm của các cạnh AB và BC, nối DN cắt CM tại I.
a) chứng minh: CI.CM=CN.CB
b) chứng minh DI=4IN
c) Kẻ tia AH vuông góc với DN tại H cắt CD tại P. Cho AB=a. Tính diện tích tứ giác HICP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TIẾNG ANH ???????????????????????????????????????????????????????????????????????????????????
https://h.vn/hoi-dap/tim-kiem?q=Cho+h%C3%ACnh+vu%C3%B4ng+ABCD+c%C3%B3+M+v%C3%A0+N+theo+th%E1%BB%A9+t%E1%BB%B1+l%C3%A0+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+c%C3%A1c+c%E1%BA%A1nh+AB+v%C3%A0+BC,+n%E1%BB%91i+DN+c%E1%BA%AFt+CM+t%E1%BA%A1i+I.++a)+ch%E1%BB%A9ng+minh:+CI.CM=CN.CB++b)+ch%E1%BB%A9ng+minh+DI=4IN++c)+K%E1%BA%BB+tia+AH+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+DN+t%E1%BA%A1i+H+c%E1%BA%AFt+CD+t%E1%BA%A1i+P.+Cho+AB=a.+T%C3%ADnh+di%E1%BB%87n+t%C3%ADch+t%E1%BB%A9+gi%C3%A1c+HICP&id=512186
Xem tại link này(mik gửi cho)
Học tốt!!!!!!!!!!
P/s : có hình
a: Ta có: ABCD là hình vuông
=>AB=BC=CD=DA(1)
Ta có: M là trung điểm của AB
=>\(MA=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của BC
=>\(NB=NC=\dfrac{BC}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra MA=MB=NB=NC
Xét ΔMBC vuông tại B và ΔNCD vuông tại C có
MB=NC
BC=CD
Do đó: ΔMBC=ΔNCD
=>\(\widehat{MCB}=\widehat{NDC}\)
mà \(\widehat{NDC}+\widehat{DNC}=90^0\)
nên \(\widehat{MCB}+\widehat{DNC}=90^0\)
=>CM\(\perp\)DN tại I
Ta có: ΔMBC=ΔNCD
=>MC=ND
b: Ta có: AH\(\perp\)DN
CM\(\perp\)DN
Do đó: AH//CM
=>AP//CM
Xét tứ giác AMCP có
AP//CM
AM//CP
Do đó: AMCP là hình bình hành
=>AM=CP
mà \(AM=\dfrac{AB}{2}=\dfrac{CD}{2}\)
nên \(CP=\dfrac{CD}{2}\)
=>P là trung điểm của CD
=>PC=PD
c: Xét ΔDIC có
P là trung điểm của DC
PH//IC
Do đó: H là trung điểm của DI
Xét ΔADI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔADI cân tại A
=>AD=AI
mà AD=AB
nên AI=AB
Z bn giải giúp mình vs !!! Bn đủ thông minh để bài toán lớp 5 này mak he .
mik chỉ tl phần a thôy nké!
giải tóm tắt:
▲MBC = ▲NCD (2cgv)
⇒ ∠NDC = ∠MCB ; ∠BMC = ∠DNC
mặt khác: ∠NDC + ∠DNC = 90
⇒ ∠MCB + ∠DNC = 90
⇒ ▲INC vuuông tại I
▲MBC ∼ ▲INC (g.g)
⇒ CI/CN = CB/CM
⇒ CI.CM = CN.CB (đpcm)