Tìm x để x+3 chia hết cho x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
Để \(56x3y⋮2\)thì: \(y=0;2;4;6;8\)
+) Nếu \(y=0\)thì: \(5+6+x+3+0=14+x⋮9\Leftrightarrow x=4\)
+) Nếu \(y=2\)thì: \(5+6+x+3+2=16+x⋮9\Leftrightarrow x=2\)
+) Nếu \(y=4\)thì: \(5+6+x+3+4=18+x⋮9\Leftrightarrow x=0;x=9\)
+) Nếu \(y=6\)thì: \(5+6+x+3+6=20+x⋮9\Leftrightarrow x=7\)
+) Nếu \(y=8\)thì: \(5+6+x+3+8=22+x⋮9\Leftrightarrow x=5\)
\(2.\)
Ta có: \(45=9.5\)
Để: \(71x1y⋮5\)thì: \(y\in\left\{0;5\right\}\)
Ta được: \(71x10;71x15\)
+) Nếu \(y=0\)thì \(71x1y⋮9\Leftrightarrow x\in\left\{0;9\right\}\)
+) Nếu \(y=5\)thì \(71x1y⋮9\Leftrightarrow x=4\)
Vậy với \(x\in\left\{0;9\right\};y=0\)và \(x=4;y=5\)thì \(71x1y⋮45\)
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)