Cho tứ giác ABCD. Gọi E, F lần lượt là trung điểm AD, BC. Đường thẳng EF cắt AC, BD lần lượt tại M và N. Chứng minh rằng AC = BD khi và chỉ khi góc AME = góc BNF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
67676767676767676767676 677767776767676767767667767676767676767676767676767676767677+2131453554675775807958874635256262772625=98726524241578399281614436737
Gọi N là trung điểm của BD.
Xét \(\Delta\)ABC có: E là trung điểm AB; F là trung điểm BC => EF là đương trung bình trong \(\Delta\)ABC
=> EF // AC. Mà AC vuông góc BD. Nên EF vuông góc BD hay ND vuông góc EF (1)
Ta thấy: FN là đường trung bình \(\Delta\)BCD => FN // CD
Do EM vuông góc CD nên EM vuông góc FN. Tương tự, ta có: FM vuông góc EN
Xét \(\Delta\)ENF có: EM vuông góc FN; FM vuông góc EN => M là trực tâm \(\Delta\)ENF
=> NM vuông góc EF (2)
Từ (1) và (2) => 3 điểm D;N;M thẳng hàng. Lại có N là trung điểm BD => B;M;D thẳng hàng (đpcm).