Bạn nào giúp mình vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔOAH vuông tại A có AH=AO
nên ΔOAH vuông cân tại A
\(\Leftrightarrow\widehat{AOH}=\widehat{AHO}=45^0\)
Xét ΔOAH vuông tại A có
\(OH^2=OA^2+AH^2\)
hay \(OH=8\sqrt{2}\left(cm\right)\)
1: Ta có: \(4x+3\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(4\sqrt{x}+3\right)=0\)
hay x=0
2: Ta có: \(\sqrt{4x^2-3}=2x+1\)
\(\Leftrightarrow4x^2-3=4x^2+4x+1\)
\(\Leftrightarrow4x=-4\)
hay x=-1(vô lý)
3: ta có: \(\sqrt{9x-6\sqrt{x}+1}=\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(\Leftrightarrow\left|3\sqrt{x}-1\right|=\sqrt{3}-1\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}=\sqrt{3}\left(x\ge\dfrac{1}{9}\right)\\3x=2-\sqrt{3}\left(0\le x< \dfrac{1}{9}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(nhận\right)\\x=\dfrac{2-\sqrt{3}}{3}\left(nhận\right)\end{matrix}\right.\)
22/ \(\omega A=8\pi\)
\(A^2=x^2+\dfrac{v^2}{\omega^2}\Leftrightarrow A^2=3,2^2+\dfrac{\left(4,8\pi\right)^2}{\omega^2}\)
\(\Leftrightarrow\omega^2A^2=3,2^2\omega^2+23,04\pi^2\Leftrightarrow64\pi^2=3,2^2.\omega^2+23,04\pi^2\Leftrightarrow\omega=2\pi\left(rad/s\right)\)
\(\Rightarrow f=\dfrac{\omega}{2\pi}=\dfrac{2\pi}{2\pi}=1\left(Hz\right)\Rightarrow D.1Hz\)
23/ \(\omega A=20;\omega^2A=80\Rightarrow\left\{{}\begin{matrix}\omega=4\left(rad/s\right)\\A=5cm\end{matrix}\right.\)
\(\Rightarrow v=\omega\sqrt{A^2-x^2}=4.\sqrt{5^2-4^2}=12\left(cm/s\right)\Rightarrow A.12cm/s\)
Bài 3:
1: =>2x=-5/3-1/2=-10/6-3/6=-13/6
hay x=-13/12
2: =>3/5x=1/7+3/5=5/35+21/35=26/35
hay x=26/3
3: =>-3x=5/6+3/4=10/12+9/12=19/12
hay x=-19/36
4: =>1/2x=3/7-5/4=12/28-35/28=-23/28
hay x=-23/14
5: =>1/4x=-3/5-7/5=-2
hay x=-8
6: =>3x=1/42+1/7=1/42+6/42=1/7
hay x=1/21
Bài 1:
Phần a bạn tự làm nha! (Đ/S: 0,5)
b, B = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\) với \(x\ge0;x\ne4;x\ne9\)
B = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
B = \(\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
B = \(\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
B = \(\dfrac{1}{\sqrt{x}-2}=\dfrac{\sqrt{x}+2}{x-4}\)
Vậy ...
c, Ta có: A = \(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\)= \(\dfrac{1}{\sqrt{x}+1}\)
T = \(\dfrac{A}{B}\)= \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)= 1 - \(\dfrac{3}{\sqrt{x}+1}\)
Ta có: x \(\ge\) 0 \(\Leftrightarrow\) \(\sqrt{x}\ge0\) \(\Leftrightarrow\) \(\sqrt{x}+1\ge1\) \(\Leftrightarrow\) \(\dfrac{3}{\sqrt{x}+1}\le3\) \(\Leftrightarrow\) \(-\dfrac{3}{\sqrt{x}+1}\ge-3\) \(\Leftrightarrow\) T \(\ge\) -2
Vậy ...
Bài 2: ĐK: x \(\ge\) 0
Giả sử: \(P\) < \(\sqrt{P}\)
\(\Leftrightarrow\) \(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}< \dfrac{\sqrt{\sqrt{x}+2}}{\sqrt{\sqrt{x}+5}}\)
\(\Leftrightarrow\) \(\dfrac{\sqrt{\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)}-\left(\sqrt{x}+2\right)}{\sqrt{x}+5}>0\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)}-\left(\sqrt{x}+2\right)>0\) (\(\sqrt{x}+5>0\) với mọi x \(\ge\) 0)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)}\sqrt{\sqrt{x}+5-\sqrt{x}-2}>0\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)}\sqrt{3}>0\)
\(\Leftrightarrow\) \(\sqrt{\sqrt{x}+2}>0\)
Vì x \(\ge\) 0 \(\Leftrightarrow\) \(\sqrt{x}+2\ge2\) \(\Leftrightarrow\) \(\sqrt{\sqrt{x}+2}\ge\sqrt{2}>0\) (Đpcm)
Vậy \(P\) < \(\sqrt{P}\)
Chúc bn học tốt!
g, PT \(\Leftrightarrow\dfrac{x+24}{1996}+1+\dfrac{x+25}{1995}+1+\dfrac{x+26}{1994}+1+\dfrac{x+27}{1993}+1+\dfrac{x+2036}{4}-4=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{1996}+\dfrac{1}{1995}+\dfrac{1}{1994}+\dfrac{1}{1993}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy ...