cho x+y+z=12 và 2^x . 2^y= 128 với x,y là số tự. Tính z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2x+2y=128
=>2x(1+2x-y)=128
=>1+2x-y E Ư(128)=(1;2;22;23;24;25;26;27}
Với x#y
=>1+2x-y lẻ
=>x,y E rỗng
Với x=y
=>1+2x-y=2 (TM)
=>2x.2=128
=>2x=64=26
=>x=6
=>y=6
=>x+y=12
=>z=0
Ta có: \(x^2+y^2-z^2\)
\(=\left(x+y\right)^2-z^2-2xy\)
\(=\left(x+y+z\right)\left(x+y-z\right)-2xy\)
\(=-2xy\)
Ta có: \(x^2+z^2-y^2\)
\(=\left(x+z\right)^2-y^2-2xz\)
\(=\left(x+y+z\right)\left(x+z-y\right)-2xz\)
\(=-2xz\)
Ta có: \(y^2+z^2-x^2\)
\(=\left(y+z\right)^2-x^2-2yz\)
\(=\left(x+y+z\right)\left(y+z-x\right)-2yz\)
\(=-2yz\)
Ta có: \(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{xz}{x^2+z^2-y^2}+\dfrac{yz}{y^2+z^2-x^2}\)
\(=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}\)
\(=\dfrac{1}{-2}+\dfrac{1}{-2}+\dfrac{1}{-2}\)
\(=\dfrac{-3}{2}\)
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
\(x+y+z=6\Rightarrow\left(x+y+z\right)^2=36\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=36\)
\(\Rightarrow xy+yz+zx=\frac{36-\left(x^2+y^2+z^2\right)}{2}=\frac{36-12}{2}=12=x^2+y^2+z^2\)(1)
Mặt khác ta luôn có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
hay: \(2x^2+2y^2+2z^2-2\left(xy+yz+zx\right)\ge0\)
hay: \(x^2+y^2+z^2\ge xy+yz+zx\)
Vậy để đẳng thức (1) xảy ra thì x = y = z = 2.
Ta có: 2x.2y=128
=> 2x+y=128
=> x+y=7 (t/m)
mà x+y+z=12
=> z=5
Vậy z=5
thanks.... bạn theo dõi mik đc ko