K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

Ta có : \(\dfrac{AB}{5}=\dfrac{AC}{12}\)

\(\Rightarrow\dfrac{AB^2}{25}=\dfrac{AC^2}{144}=\dfrac{AB^2+AC^2}{25+144}=\dfrac{BC^2}{169}=4\)

\(\Rightarrow\left\{{}\begin{matrix}AB=10\\AC=24\end{matrix}\right.\) ( cm )

- Áp dụng hệ thức lượng vào tam giác ABC vuông tại A đường cao AH .

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{120}{13}\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ABH vuông tại H :

\(BH=\sqrt{AB^2-AH^2}=\dfrac{50}{13}\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ACH vuông tại H :

\(CH=\sqrt{AC^2-AH^2}=\dfrac{288}{13}\left(cm\right)\)

Vậy ..

27 tháng 6 2021

Thiếu đề

30 tháng 1 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

- Vẽ góc ∠ xAy = 90º

- Trên tia Ax lấy điểm B sao cho AB = 3cm.

Trên tia Ay lấy điểm C sao cho AC = 1cm.

- Nối các điểm B và C ta được tam giác ABC thỏa mãn.

Đo góc C ta được ∠C ≈ 72o.

AH
Akai Haruma
Giáo viên
6 tháng 2

Lời giải:
a. Xét tam giác $ABH$ và $ACK$ có:

$AB=AC$

$\widehat{A}$ chung

$\widehat{AHB}=\widehat{AKC}=90^0$

$\Rightarrow \triangle ABH=\triangle ACK$ (ch-gn)

$\Rightarrow AH=AK$

b.

Từ tam giác bằng nhau phần a suy ra $\widehat{B_1}=\widehat{C_1}$

Vì $AB=AC; AK=AH\Rightarrow AB-AK=AC-AH$

$\Rightarrow BK=CH$

Xét tam giác $KBI$ và $HCI$ có:

$\widehat{B_1}=\widehat{C_1}$

$\widehat{BKI}=\widehat{CHI}=90^0$

$BK=CH$

$\Rightarrow \triangle KBI=\triangle HCI$ (c.g.c)

$\Rightarrow BI=CI$

Xét tam giác $ABI$ và $ACI$ có:
$AB=AC$

$AI$ chung

$BI=CI$

$\Rightarrow \triangle ABI=\triangle ACI$ (c.c.c)

$\Rightarrow \widehat{BAI}=\widehat{CAI}$

$\Rightarrow AI$ là phân giác $\widehat{A}$

$

AH
Akai Haruma
Giáo viên
6 tháng 2

Hình vẽ:

30 tháng 6 2021

ta có: tan B=\(\dfrac{8}{15}\)

=>tan B=\(\dfrac{8}{15}=\dfrac{AC}{AB}\)

mà AB=30 cm (gt)

=> AC= 8.30:15=16 cm

xét tam giác ABC vuông tại A (gt) 

=> AC2+AB2=BC2  ( Định lí pytago)

hay 162+302=BC2

=>BC=\(\sqrt{16^2+30^2}=34\)

ta có sin B=\(\dfrac{AC}{CB}=\dfrac{16}{34}=\dfrac{8}{17}\)

cos B= \(\dfrac{AB}{BC}=\dfrac{30}{34}=\dfrac{15}{17}\)

cotg B =\(\dfrac{30}{16}=\dfrac{15}{8}\)

26 tháng 6 2021

- Áp dụng định lý pitago vào tam giác ABC vuông tại A .

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

- Áp dụng hệ thức lượng vào tam giác ABC đường cao AH .

\(AH.BC=AB.AC\)

\(\Rightarrow AH=9,6\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ABH vuông tại H :

\(BH=\sqrt{AB^2-AH^2}=7,2\left(cm\right)\)

- Áp dụng định lý pitago vào tam giác ACH vuông tại H :

\(CH=\sqrt{AC^2-AH^2}=12,8\left(cm\right)\)

Ta có : AD là đường phân giác của tam giác ABC .

\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BD+CD}=\dfrac{AB+AC}{BC}=1,4\)

=> BD = 60/7 (cm )

=> HD = BD - BH = 48/35 (cm ) .
 

27 tháng 6 2021

BC=9cm chứ?

`S_{DeltaABC}=(AH.BC)/2=(12.9)/2=6.9=54cm^2`

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow CH=\dfrac{12^2}{9}=\dfrac{144}{9}=16\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot25}{2}=\dfrac{300}{2}=150\left(cm^2\right)\)

a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có 

AE chung

\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))

Do đó: ΔACE=ΔAKE(Cạnh huyền-góc nhọn)

Suy ra: AC=AK(Hai cạnh tương ứng)

10 tháng 9 2017

Xét ΔAIK vuông tại K và ΔAIH vuông tại H có:

      AH = AK (theo phần a)

      AI chung

⇒ ΔAIK = ΔAIH (cạnh huyền – cạnh góc vuông).

⇒ góc IAK = góc IAH (hai góc tương ứng)

Vậy AI là tia phân giác của góc A.

24 tháng 11 2017

Giải bài 65 trang 137 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 65 trang 137 Toán 7 Tập 1 | Giải bài tập Toán 7

Xét ΔABH vuông tại H và ΔACK vuông tại K có:

      AB = AC (Do ΔABC cân tại A)

      góc A chung

Nên ΔABH = ΔACK (cạnh huyền – góc nhọn) ⇒ AH = AK (hai cạnh tương ứng).