K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

2 tháng 9 2021

Ta có: \(\widehat{A}+\widehat{D}=180^o\)

Mà \(\widehat{A}=3\widehat{D}\)

\(\Rightarrow\widehat{A}=135^o;\widehat{D}=45^o\)

Ta có:\(\widehat{A}=\widehat{B}\);\(\widehat{C}=\widehat{D}\) 

19 tháng 9 2018

Tương tự bài 1A. Ta có:  C ^ = D ^ = 45 0 ,    A ^ = B ^ = 135 0

Bài 6: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK và HB=KC

Xét ΔABC có

\(\dfrac{AK}{AB}=\dfrac{AH}{HC}\)

Do đó: KH//BC

Xét tứ gác BKHC có KH//BC

nên BKHC là hình thang

mà KC=BH

nên BKHC là hình thang cân

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

Xét ΔABC có 

\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)

Do đó: HK//BC

Xét tứ giác BCHK có HK//BC

nên BCHK là hình thang

mà HB=KC(ΔAHB=ΔAKC)

nên BCHK là hình thang cân

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

9 tháng 7 2021

Bafi1: Do AB // CD ( GT )

⇒ˆA+ˆC=180o

⇒2ˆC+ˆC=180o

⇒3ˆC=180o

⇒ˆC=60o

⇒ˆA=60o.2=120o 

Do ABCD là hình thang cân

⇒ˆC=ˆD

Mà ˆC=60o

⇒ˆD=60o

AB // CD ⇒ˆD+ˆB=180o

⇒ˆB=180o−60o=120o

Vậy ˆA=ˆB=120o;ˆC=ˆD=60o

9 tháng 7 2021

Bài 2:

Ta có; AB//CD

\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)

^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)

\(\Rightarrow\)^A= \(135^O\)

\(\Rightarrow\)^D=\(45^o\)

\(\Rightarrow B=A=135^o\)

\(\Rightarrow C=D=45^o\)

16 tháng 11 2021

undefined

16 tháng 11 2021

Vì ABCD là htc nên \(\widehat{A}=2\widehat{C}=2\widehat{D}\)

Mà AB//CD nên \(\widehat{A}+\widehat{D}=180^0\Rightarrow3\widehat{D}=180^0\Rightarrow\widehat{D}=60^0\Rightarrow\widehat{A}=120^0\)

Vì ABCD là htc nên \(\widehat{A}=\widehat{B}=120^0;\widehat{D}=\widehat{C}=60^0\)

9 tháng 11 2021

undefined

9 tháng 11 2021

a =135 độ

b=135 độ

c=45 độ

d=45 độ

Bài 2: 

a: Xét ΔABC có

\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)

Do đó: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

b: Ta có: \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)

\(\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)

Bài 5: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)