1.P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-1}{c-4}\right):\dfrac{1}{\sqrt{c}+2}\)
Tìm x nguyên để P nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk: \(x\ne0;4\); \(x>0\)
P = \(\left[\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{1}{\sqrt{x}-2}\right]\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
= \(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\times\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b) Để P < \(\dfrac{1}{2}\)
<=> \(\dfrac{\sqrt{x}-1}{\sqrt{x}}< \dfrac{1}{2}\)
<=> \(1-\dfrac{1}{\sqrt{x}}< \dfrac{1}{2}\)
<=> \(\dfrac{1}{\sqrt{x}}>\dfrac{1}{2}\)
<=> \(\sqrt{x}< 2\)
<=> x < 4
<=> 0 < x < 4
a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
a. \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)
\(=\left(\dfrac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)-\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}\right):\dfrac{2\left(\sqrt{x}-1\right)^2}{x-1}\)
\(=\left(\dfrac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)-\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{x^2-x}\right).\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\left(\dfrac{x^2\sqrt{x}+x^2-x-\sqrt{x}-\left(x^2\sqrt{x}-x^2+x-\sqrt{x}\right)}{x^2-x}\right).\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\left(\dfrac{x^2\sqrt{x}+x^2-x-\sqrt{x}-x^2\sqrt{x}+x^2-x+\sqrt{x}}{x^2-x}\right).\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2x^2-2x}{x^2-x}.\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2\left(x^2-x\right)}{x^2-x}.\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=2.\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}=\dfrac{x-1}{\left(\sqrt{x}-1\right)^2}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b. \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)
Để A có giá trị nguyên \(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\in Z\) \(\Leftrightarrow2⋮\left(\sqrt{x}-1\right)\)\(\Leftrightarrow\left(\sqrt{x}-1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow\sqrt{x}\in\left\{2;0;3;-1\right\}\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}\in\left\{2;0;3\right\}\Leftrightarrow x\in\left\{4;0;9\right\}\)
Vậy để A có giá trị nguyên thì \(x\in\left\{4;0;9\right\}\)
a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)
b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)
\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)
=>A<1
c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)
=>A>=0 với mọi x thỏa mãn ĐKXĐ
mà A<1
nên 0<=A<1
=>Để A nguyên thì A=0
=>x=0
a) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-4}{x-1}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\left(dkxd:x\ge0;x\ne1;x\ne4\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
\(=\dfrac{x-4}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b) Với \(x\ge0;x\ne1;x\ne4\):
Thay \(x=3+2\sqrt{2}\) vào \(P\), ta được:
\(P=\dfrac{\sqrt{3+2\sqrt{2}}+2}{\sqrt{3+2\sqrt{2}}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}+2}{\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+2}{\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(=\dfrac{\sqrt{2}+1+2}{\sqrt{2}+1-1}\)
\(=\dfrac{\sqrt{2}+3}{\sqrt{2}}\)
\(=\dfrac{2+3\sqrt{2}}{2}\)
c) Với \(x\ge0;x\ne1;x\ne4\),
\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)
Để \(P\) có giá trị nguyên thì \(\dfrac{3}{\sqrt{x}-1}\) có giá trị nguyên
\(\Rightarrow 3\vdots\sqrt x-1\\\Rightarrow \sqrt x-1\in Ư(3)\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{2;4;0\right\}\)
\(\Rightarrow x\in\left\{4;16;0\right\}\)
Kết hợp với ĐKXĐ của \(x\), ta được:
\(x\in\left\{0;16\right\}\)
Vậy: ...
\(\text{#}Toru\)
a) \(B=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\left(đk:x\ge0,x\ne4\right)\)
\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}\)
c) \(C=A\left(B-2\right)=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}-2\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\dfrac{-2}{\sqrt{x}+2}=\dfrac{-2}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0\right\}\)
\(\Rightarrow x\in\left\{0;1;9;16\right\}\)
ĐKXĐ: \(x\ge0,x\ne4\)
a) \(B=\dfrac{2\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}\)
b) \(C=A\left(B-2\right)=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\dfrac{2\sqrt{x}+2-2\sqrt{x}-4}{\sqrt{x}+2}=\dfrac{-2}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\left(\sqrt{x}-2\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp ĐKXĐ:
\(\Rightarrow x\in\left\{0;1;9;16\right\}\)
\(Q=\dfrac{x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2}{x-4}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(=\dfrac{-x+2\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
Để Q<0 thì \(\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}0< =x< 9\\x< >4\end{matrix}\right.\)
\(a,P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\\ b,P=1\Leftrightarrow\sqrt{x}+1=2\sqrt{x}\\ \Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\\ c,P=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\in Z\\ \Leftrightarrow\sqrt{x}+1⋮2\sqrt{x}\\ \Leftrightarrow2\sqrt{x}+2⋮2\sqrt{x}\\ \Leftrightarrow2\sqrt{x}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}=1\left(\sqrt{x}>0\right)\\ \Leftrightarrow x=1\)
c??
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-1}{x-4}\right):\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{1}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)
Để P nguyên thì \(\sqrt{x}-2\in\left\{-1;1\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3\right\}\)
hay \(x\in\left\{1;9\right\}\)