K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

☘ Ta có:

\(P=\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)

\(=\dfrac{a}{\sqrt{ab+ac+ca+a^2}}+\dfrac{b}{\sqrt{ab+ac+ca+b^2}}+\dfrac{c}{\sqrt{ab+ac+ca+c^2}}\)

\(=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

☘ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow\dfrac{1}{\sqrt{a+b}}\times\dfrac{1}{\sqrt{a+c}}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{2}\)

\(\Rightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2\left(a+b\right)}+\dfrac{a}{2\left(a+c\right)}\)

☘ Tương tự, ta cũng có:

\(\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\dfrac{b}{2\left(a+b\right)}+\dfrac{b}{2\left(b+c\right)}\)

\(\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{c}{2\left(a+c\right)}+\dfrac{c}{2\left(b+c\right)}\)

\(\Rightarrow P\le\dfrac{a+b}{2\left(a+b\right)}+\dfrac{a+c}{2\left(a+c\right)}+\dfrac{b+c}{2\left(b+c\right)}=\dfrac{3}{2}\)

☘ Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Source: https://hoc24.vn/hoi-dap/question/237527.html

NV
10 tháng 1 2021

\(a^2-ab+b^2=\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow P\le\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
31 tháng 1

Lời giải:

Áp dụng BĐT AM-GM:

\(P=\frac{2a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\\ =\frac{2a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{4(b+c)}+\frac{b}{b+a}+\frac{c}{4(c+b)}+\frac{c}{c+a}\)

\(=(\frac{a}{a+b}+\frac{b}{b+a})+(\frac{a}{a+c}+\frac{c}{a+c})+\frac{1}{4}(\frac{b}{b+c}+\frac{c}{b+c})=1+1+\frac{1}{4}=\frac{9}{4}\)

Vậy $P_{\max}=\frac{9}{4}$

NV
29 tháng 3 2023

\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)

\(=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)

14 tháng 4 2017

Bài 1:

Ta có: \(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\dfrac{b}{\sqrt{1+b^2}}=\dfrac{b}{\sqrt{ab+bc+ca+b^2}}=\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

\(\dfrac{c}{\sqrt{1+c^2}}=\dfrac{c}{\sqrt{ab+bc+ca+c^2}}=\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Vậy \(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng BĐT AM-GM ta có:

\(P\le a\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+b\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)+c\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)=\dfrac{9}{4}\)

Bài 2:

Ta có:

\(\dfrac{1+\sqrt{1+x^2}}{x}=\dfrac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\dfrac{2+\dfrac{4+\left(1+x^2\right)}{2}}{2x}=\dfrac{9+x^2}{4x}\)

Tương tự ta cũng có:

\(\dfrac{1+\sqrt{1+y^2}}{y}\le\dfrac{9+y^2}{4y};\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+z^2}{4z}\)

Cộng theo vế 3 BĐT trên ta có:

\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+x^2}{4x}+\dfrac{9+y^2}{4y}+\dfrac{9+z^2}{4z}\)

\(=\dfrac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\dfrac{9\cdot\dfrac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)

14 tháng 4 2017

Bài 1:

\(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Sau đó côsi

Tự làm nốt nhé, ra 3/2 đấy. Em học lớp 8 nên cách giải chỉ thế thôi. Câu 2 em chưa làm được

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)

\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$

30 tháng 12 2021

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)

CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

30 tháng 12 2021

Anh ơi! Anh giúp em thêm BĐT ạ! 

https://hoc24.vn/cau-hoi/cho-xyz-0-thoa-man-dfrac1xdfrac1ydfrac1z3-tim-gtln-cua-bieu-thuc-pdfrac1sqrt5x22xy2y2dfrac1sqrt5y22yz2z2dfrac1sqrt5z22xz2x2.4139241594094

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

NV
3 tháng 8 2021

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)