K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 12 2020

Quy đồng vế phải:

\(VP=\dfrac{a\left(x+1\right)\left(x+2\right)+b\left(x+2\right)+c\left(x+1\right)^2}{\left(x+1\right)^2\left(x+2\right)}\)

\(=\dfrac{ax^2+3ax+2a+bx+2b+cx^2+2cx+c}{\left(x+1\right)^2\left(x+2\right)}\)

\(=\dfrac{\left(a+c\right)x^2+\left(3a+b+2c\right)x+2a+2b+c}{\left(x+1\right)^2\left(x+2\right)}\)

Đồng nhất hệ số với tử số vế trái ta được:

\(\left\{{}\begin{matrix}a+c=0\\3a+b+2c=0\\2a+2b+c=1\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=1\\c=1\end{matrix}\right.\)

a: =>a(x+1)(x+2)+bx(x+2)+cx(x+1)=1

=>a(x^2+3x+2)+bx^2+2bx+cx^2+cx=1

=>ax^2+3ax+2a+bx^2+2bx+cx^2+cx=1

=>x^2(a+b+c)+x(3a+2b+c)+2a=1

=>a+b+c=0 và 3a+2b+c=0 và a=1/2

=>a=1/2; b+c=-1/2; 2b+c=-3/2

=>b=-1; c=1/2; a=1/2

b: =>1=(ax+b)(x-1)+c(x^2+1)

=>x^2*a-a*x+bx-b+cx^2+c=1

=>x^2(a+c)+x(-a+b)-b+c=1

=>a+c=0 và -a+b=0 và -b+c=1

=>a+b=-1 và -a+b=0 và a+c=0

=>a=-1/2; b=-1/2; c=-a=1/2

12 tháng 5 2022

-ĐKXĐ: \(x\ne\pm1\)

\(\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^3}{1-x}+x\right)\left(\dfrac{1+x^3}{1+x}-x\right)\right]\)

\(=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\dfrac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}+x\right)\left(\dfrac{\left(1+x\right)\left(x^2-x+1\right)}{1+x}-x\right)\right]\)

\(=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(x^2+x+1+x\right)\left(x^2-x+1-x\right)\right]\)

\(=\dfrac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(x+1\right)^2\left(x-1\right)^2\right]\)

\(=\dfrac{x\left(x-1\right)^2\left(x+1\right)^2}{1+x^2}.\dfrac{1}{\left(x+1\right)^2\left(x-1\right)^2}\)

\(=\dfrac{x}{x^2+1}\)

\(\Rightarrow m=\dfrac{x}{x^2+1}\)

-Khi \(x< 0\), mà \(x^2+1>0\forall x\)

\(\Rightarrow m=\dfrac{x}{x^2+1}< 0\).

\(\Rightarrow m< 0\)

-Vậy khi \(m< 0\) và \(m\ne\dfrac{-1}{2}\) thì \(x< 0\)

NV
6 tháng 3 2021

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)

11 tháng 10 2023

sao lại phải =0

 

4 tháng 2 2021

\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)

\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)

Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)

1 tháng 8 2021

P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )

Ta có : 

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)

Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)

\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)