chứng minh \(5^6+5^5+5^4+5^3+5^2+5+1\) chia hết cho 126
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (5^6+5^3)+(5^5+5^2)+(5^4+5)+(5^3+1)
= (5^3+1).(5^3+5^2+5+1)
= 126.(5^3+5^2+5+1) chia hết cho 126
k mk nha
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4)+(5^5+5^6+5^7+5^8)+...+(5^2001+5^2002+5^2003+5^2004)
=780+5^4(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)
=780(1+5^4+...+5^2000) chia hết cho 65
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4+5^5+5^6)+...+(5^1999+5^2000+5^2001+5^2002+5^2003+5^2004)
=19530+...+5^1998(5+5^2+5^3+5^4+5^5+5^6)
=19530(1+...+5^1998) chia hết cho 126
\(S=5+5^2+5^3+5^4+...+5^{2004}\)
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(S=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)
\(S=5.6+5^3.6+...+5^{2003}.6\)
\(S=6\left(5+5^3+...+5^{2003}\right)\) chia hết cho 6
S=5+52+53+54+55+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
⇒S chia hết cho 126
S=5+52+53+54+55+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+53+54+55+...+52004
(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2 chia hết cho 65
Vậy S chia hết cho 65
- cho S = 5+ 5^2 + 5^3 + 5^4+ 5^5+.......+5^2004
- chứng minh S chia hết cho 30 và chia hết cho 126.
S = 5+52+53+54+....+52004
S = (5+52)+(53+54)+...+(52003+52004)
S = 1(5+52)+52(5+52)+.....+52002(5+52)
S = 1.30 + 52.30 +.....+52002.30
S = 30.(1+52+....+52002) chia hết cho 30
=> S chia hết cho 30 (Đpcm)
\(5^6+5^5+5^4+2.5^3+5^2+5+1\)
\(=\left(5^6+5^3\right)+\left(5^5+5^2\right)+\left(5^4+5\right)+\left(5^3+1\right)\)
\(=\left(5^3+1\right)\left(5^3+5^2+5+1\right)\)
\(=126\left(5^3+5^2+5+1\right)⋮126\)
\(\Rightarrow5^6+5^5+5^4+2.5^3+5^2+5+1⋮126\)
\(5^6+5^5+5^4+5^3+5^2+5+1\)
\(=19531\)\(⋮̸\) \(126\)
Vậy \(5^6+5^5+5^4+5^3+5^2+5+1\) không chia hết cho \(126\)