K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2015

Giả sử 2≤b≤a<c có a(a+1)=c(c+1)−b(b+1)=(c−b)(c+b+1)      (1)

Do a+1<c+b+1 từ (1)⇒c−b<a⇒c<a+b⇒c+b+1<a+2b+1⇒c+b+1<3a+1

c>a⇒c+b+1=2a hoặc c+b+1=3a

Vì a,b,c là các số nguyên tố , c>a⇒c lẻ ta có 2 trường hợp

TH1: c+b+1=2a; Do c+1 và 2a là số chẵn thì b là số nguyên tố chẵn nên b chẵn nên b=2

  Từ đó tìm ra 3a=11 (loại)

TH2: c+b+1=3a thay vào (1) có a+1=3(c−b) mà c=3a−b−1⇒a+1=3(3a−2b−1)⇒3b=4a−2⇒b chẵn ⇒b=2⇒a=2⇒c=3

27 tháng 5 2017

theo cong thuc  x1 x2

16 tháng 3 2019

\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)

\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)

\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\text{Giả sử }a< b< c\)

\(\Rightarrow a\le2;b\le3;c\le5\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)

\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)

17 tháng 3 2019

ể ==

\(2< 3\Rightarrow\frac{1}{2}>\frac{1}{3}\)

Cậu Bé Tiến Pro: e đổi dấu đi :)) 

27 tháng 3 2022

tra gút gồ đe=))

27 tháng 3 2022

lười